

Gravitational-wave transient detection and multi-messenger astrophysics

Ray Frey, University of Oregon

for the

LIGO Scientific Collaboration

and the Virgo Collaboration

LIGO-G1000515

- Introduction overview and status of LIGO and Virgo
- Observational results
- A new astronomy with advanced GW detectors

19July2010 TeVpa, Paris

Required GW Sensitivity for Detection

- GW emission requires time varying quadrupole moment of mass distribution, \ddot{Q}_{ij} \rightarrow gravitational-wave strain, h = δ L/ L, is the analog of the radiation field E in E&M
- Strain estimate:

$$h \sim \left(\frac{GM}{c^2}\right) \left(\frac{v^2}{c^2}\right) \frac{1}{r}$$

For $1M_{\odot} \Rightarrow R_s = 2GM_{\odot}/c^2 = 3$ km If $v \approx c$, then at r = 15 Mpc:

$$h\sim 3 imes 10^{-21}$$

- Michelson interferometer with Fabry-Perot cavity arms.
- Long baseline: 4 km (h = $\delta L/L$) For h $\approx 10^{-21}$, L ≈ 1 km, then $\delta L \approx 10^{-18}$ m
- Fabry-Perot Cavity storage time ~1 ms (~100 bounces) ۲
- Power recycling (x30)
- Noise estimate:

*IOJI*VIRG

Global network of interferometers

S5/VSR1 sensitivity

19July2010 TeVpa, Paris

The LIGO-Virgo network: sky coverage

GW signals classification

Credit: NASA/CXC/ASU/J. Hester et al.

S5/VSR1 sensitivity to compact binary coalescence

(horizon= distance to optimally oriented and located binary which gives SNR=8 in one detector)

S5/VSR1 sensitivity to **GW Bursts**

- No GW detections yet
- However, beginning to make astrophysically interesting limits
 - This talk: Astrophysically targeted transient searches (GRBs, SGRs)
 - Others:
 - Crab pulsar spindown limit (ApJ 683 (2008) 45)
 - cosmic GW background limit < BBN (Nature 460 (2009) 990)

- Era of advanced GW detectors is approaching (>2014) in which we expect GW detections will become frequent (more on this later)
- To take advantage of this opportunity, we have developed a suite of multi-messenger pathways to fully explore the science (this talk)

Multi-messenger astronomy with GWs

Multi-messenger astronomy with GWs

- Detection confidence
- Event time
- Sky position
- Improved search sensitivity
- Redshift
- Progenitor information

- GRBs
- SGRs
- Externally triggered searches neutrinos
 - High-energy neutrinos (Ice Cube, ANTARES, ...)
 - GRBs, ?
 - Low-energy neutrinos (Super-K, LVD, Borexino,...)
 - Core-collapse supernovae
- Electromagnetic follow-ups of GW triggers
 - Requires fast (~10 min) id and distribution of LIGO-Virgo trigger (for S6)
 - ~few degree resolution with LIGO-Virgo network
 - Swift ToO XRT
 - Wide-angle optical telescopes (SkyMapper, TAROT, Quest, ...)
 - Radio

Multi-messenger astronomy with GWs – Status

- Externally triggered searches gamma, X-rays (Swift, Fermi, IPN)
 - GRBs
 - SGRs

Past and ongoing searches

- Externally triggered searches neutrinos
 - High-energy neutrinos (Ice Cube, Antares, …)
 - GRBs, ?

- Low-energy neutrinos (Super-K, LVD, Borexino,...)
 - Core-collapse supernovae
- Electromagnetic follow-ups of GW triggers
 - Requires fast (~10 min) id and distribution of LIGO-Virgo trigger (for S6)
 - ~few degree resolution with LIGO-Virgo network
 - Swift ToO XRT
 - Wide-angle optical telescopes (SkyMapper, TAROT, Quest, ...)
 - Radio

19July2010 TeVpa, Paris

Gamma-ray Bursts and GWs

Short-duration GRBs

 Associated with binary mergers (NS-NS, NS-BH) Long-duration GRBs

• Associated with core-collapse of massive stars ("hypernovae")

MOJIVIRG

Both progenitor models would also give GW emission

Mergers are efficient GW radiators

 $E_{GW} \sim 10^{-2} Mc^2$

• Massive core collapse – unknown, but expected to be less efficient

GRB 070201

GRB 070201 – a short-duration gamma-ray burst with position consistent with M31 (Andromeda), 0.8 Mpc away.

IOJIVIRG

- Such a nearby GRB would have easily been observed by LIGO if due to a binary merger
- This hypothesis ruled out at ~99% CL
- Most likely: SGR in M31 (E_{iso}~10⁴⁵ erg)
- Astrophys. J. 681 (2008) 1419

GRB 070201 (contd)

Binary coalescence exclusion:

Also searched for unmodeled bursts: Unable to exclude SGR from M31

- Soft Gamma Repeaters are thought to be magnetars – highly magnetized neutron stars
- Can emit occasional EM flares (~10⁴² erg), giant flares (~10⁴⁶ erg), or flare "storms"
- Flare mechanism (crust cracking) would excite vibrational modes \rightarrow GWs

IIOJIVIRG

General idea: Look for GW in coincidence with flares

- + flare
- giant flare
 - k storm

- GW energy limits are comparable to total EM energy emission
- PRD 76 (2007) 062003 (LSC)
- Search for GW bursts at times of 190 flares from 1806-20, 1900+14
 - Excess power search for neutron star *f*-modes (~1.5–3 kHz) and arbitrary lower-frequency bursts
 - GW energy limits as low as *few* × 10⁴⁵ erg; **PRL 101 (2008) 21110**
- Stack GW signal power from each flare in 2006 SGR 1900+14 "storm":

• GW energy limit *few* × 10⁴⁵ erg; **ApJ 701 (2009) L68**.

19July2010 TeVpa, Paris

*IOJI*VIR

Advanced LIGO and Virgo

- Major upgrades
 - Lasers, optics, suspensions
 - Limited by Quantum noise
- 10x better sensitivity
- 1000x bigger search volume

Some elements of advanced detectors implemented already in S6 and VSR3

19July2010 TeVpa, Paris

21

- Externally triggered searches gamma, X-rays (Swift, Fermi, IPN)
 - GRBs
 - SGRs
- Externally triggered searches neutrinos
 - High-energy neutrinos (IceCube, ANTARES, ...)
 - GRBs, ?
 - Low-energy neutrinos (Super-K, LVD, Borexino,...)
 - Core-collapse supernovae
- Electromagnetic follow-ups of GW triggers
 - Requires fast (~10 min) id and distribution of LIGO-Virgo trigger (for S6)
 - ~few degree resolution with LIGO-Virgo network
 - Swift ToO XRT
 - Wide-angle optical telescopes (SkyMapper, TAROT, Quest, ...)
 - Radio

IIOIIVIRG

High-energy neutrinos + GW

See Poster by B. Bouhou

High-energy neutrinos possible from GRBs: baryons accelerated in relativistic shocks

- Long GRBs
- Short GRBs
- Failed GRBs
- Low-L GRBs
- Joint data analysis
 planned: LIGO-Virgo
 + IceCube, ANTARES
- (e.g. Y. Aso, et al CQG 25 (2008) 114039)

Multi-messenger astronomy

with GWs – current developments

- Externally triggered searches gamma, X-rays (Swift, Fermi, IPN)
 - GRBs
 - SGRs
- Externally triggered searches neutrinos
 - High-energy neutrinos (Ice Cube, ANTARES, ...)
 GRBs, ?
 - Low-energy neutrinos (Super-K, LVD, Borexino,...)
 - Core-collapse supernovae
- Electromagnetic follow-ups of GW triggers
 - Requires fast (~10 min) id and distribution of LIGO-Virgo tri
 - ~few degree resolution with LIGO-Virgo network
 - Swift ToO XRT
 - Wide-angle optical telescopes (SkyMapper, TAROT, Quest, ...)
 - Radio

19July2010 TeVpa, Paris

- Gravitational Waves (prompt)
- Neutrinos (prompt, 10s of MeV, 3 flavors)
- Electromagnetic (delayed)
- Optical (EM) signature:
 - may be obscured (eg SN 2008iz in M82 missed in optical)
 - unable to determine time of bounce to better than ~ day
- Neutrinos and GWs directly probe physics of core collapse
 - Signatures separated by < seconds</p>
 - A tight coincidence window can be used to establish a correlation
 - Sensitivity range of current GW and neutrino detectors similar

C. D. Ott, A. Burrows, L. Dessart, and E. Livne. Astrophys. J., 685, 1069, 2008.

MOJIVIRG

G1000515

19July2010 TeVpa, Paris

A. Burrows, E. Livne, L. Dessart, C. D. Ott, and J. Murphy. Astrophys. J., 655, 416, 2007.

Classic core bounce GW burst

 Perhaps: acoustic pulsations of proto-neutron star

G1000515

- Neutrinos:
 - Super-K: ~10⁴ detected neutrinos for galactic SN
 - 1 for M31
 - Next generation (larger) detectors proposed
- Currently pursuing agreements for joint GW-neutrino searches
- GW range very uncertain (need detections to understand the physics!)
- Comparable range for aLIGO/AdV and Super-K (local group) with weak signals for extragalactic SNe ¹ coincidence helpful

(I. Leonor et al CQG 27 (2009) 084019)

 Rate: 5 Mpc sensitive range gives ~1 CCSN / 2 y (Ando 2005)

Multi-messenger astronomy

with GWs – current developments

- Externally triggered searches gamma, X-rays (Swift, Fermi, IPN)
 - GRBs
 - SGRs
- Externally triggered searches neutrinos
 - High-energy neutrinos (Ice Cube, Antares, …)
 - GRBs, ?
 - Low-energy neutrinos (Super-K, LVD, Borexino,...)
 - Core-collapse supernovae
- Electromagnetic follow-ups of GW triggers
 - Requires fast (~10 min) id and distribution of LIGO-Virgo trigger (for S6)
 - ~few degree resolution with LIGO-Virgo network

19July2010

- Swift ToO XRT
- Wide-angle optical telescopes (SkyMapper, TAROT, Quest, ...)

TeVpa, Paris

Radio

EM Followups

- First attempts with LIGO-Virgo network Dec, 2009
- More expected Aug-Sept 2010

Advanced LIGO/Virgo reach

(example)

- BNS sources ~ D^n n = 2.7 \rightarrow 3
- D ~ 50 Mpc, initial LIGO/Virgo
 - ~ 500 Mpc, Adv LIGO/Virgo
- Advanced detectors reach includes millions of large galaxies and hundreds of superclusters

TABLE V: Detection rate	es for compact	binary coalescence	sources.
-------------------------	----------------	--------------------	----------

IFO	$Source^{a}$	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$\dot{N}_{ m high}$	$\dot{N}_{ m max}$
		yr^{-1}	yr^{-1}	${ m yr}^{-1}$	yr^{-1}
Initial	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			10^{-4d}	10^{-3e}
Advanced	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^{b}	300^{c}
	IMBH-IMBH			0.1^d	1^e

arXiv: 1003.2480 (LSC, Virgo)

 Advanced LIGO/Virgo is sensitive to coalescing NS and/or BH binaries to distances which are cosmologically relevant.

• The detected waveform is a function of many quantities, including:

 $(1+z)\mathcal{M}, D_L, \iota, heta, \phi, \psi$ $\mathcal{M} = m_1^{3/5} m_2^{3/5} / (m_1 + m_2)^{1/5}$

- A sample of short GRBs with measured redshifts allow extraction of Distance (D_L) independent of EM distance ladder (based only on GR)
 - e.g. Dalal et al, PRD 74 (2006) 063006: measure Ho to 2% in a year of Advanced LIGO data (too optimistic?)
- Sky position (θ, φ) and beaming constraint (ι) improve measurement of D_L
 - Nissanke et al, arXiv:0904:1017

IIOJJ VIRO

- LIGO and Virgo have accumulated substantial data sets at the design sensitivity of the initial detectors (runs S5 and VSR1)
 - No detections yet, but starting to make interesting statements:
 - GRBs, SGRs (and others)
- Current data taking and analysis: Runs S6/VSR2
- Advanced LIGO and Virgo are being constructed
 - x10 better sensitivity; x1000 larger volume for sources
 - Science turn on ~2015
- Expect detections to become "routine" \rightarrow GW science & astronomy
 - GWs can provide unique information toward understanding the astrophysics underlying transient sources
- To fully exploit this science, a suite of multi-messenger techniques have been developed (EM external triggers), while others are now being developed and tried (neutrinos, EM follow-ups)

GWs are transverse, with x and + polarizations: $h_x(t)$, $h_+(t)$

19July2010 TeVpa, Paris

IIOJIVIRG

What Limits Sensitivity of the Interferometers?

- Seismic noise & vibration limit at low frequencies
- Thermal noise of suspensions and test masses
- Quantum nature of light (Shot Noise) limits at high frequencies
- Limitations of facilities much lower

*IOJI*VIRG

Science runs and sensitivity

G1000515

19July2010 TeVpa, Paris

Test Masses

Fused Silica, 10 kg, 25 cm diameter and 10 cm thick Polished to λ /1000 (1 nm)

G1000515

Length readout and control

IIOJIVIRG

Coalescing Compact Binaries

NS-NS, BH-BH, (BH-NS) binary systems

Numerical relativity

NS-NS(BH-BH) (BH-NS) binary systems Development of a numerically stable formalism... Inspiral Merger Ringdown F. Pretorius, PRL 95 (2005) Ψ_4 Ψ_{4} 4e-05 Horizon Distance vs Total Mass — *I=2 I=2,3* 2e-05 05 1000EOB inspiral-merger-ringdown 900 -2e-05 05 Effective Distance (Mpc) 800 -4e-05 05 700 300 100 200400 500 TA 4e-05 *I=2,3,4* 600 *I=2,3,4* 2e-05 500 400 -2e-05 300 SPA inspiral only -4e-05 200 100 200 300 t / M 400 500 100 200 300 t/M 400 500 100 BH-BH, 10:1 mass ratio, arXiv:0811.3952 20 40 60 80 180 200 100 120 160 140Total Mass (M_{Sun}) LSC+theory "NINJA": arXiv:0901.4399

19July2010 TeVpa, Paris