TeV Galactic Source Physics with CTA

Yves Gallant, Matthieu Renaud LPTA, CNRS/IN2P3, U. Montpellier 2, France for the CTA consortium

TeV Particle Astrophysics 2010 Multimessenger HE astrophysics session Paris, July 19, 2010

TeV γ-rays and the Cherenkov Telescope Array (CTA) Shell-Type Supernova Remnants Pulsar Wind Nebulae

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

Young and older PWNe

PWN population and CTA

Very High Energy (VHE, $30 \text{ GeV} < E_{\gamma} < 100 \text{ TeV}$) or "TeV" γ -Ray astronomical detectors

- "GeV" y-rays detected in space experiments (EGRET, Fermi)
- at high E, limited by calorimeter depth and collecting area
- \Rightarrow for higher energies, use Earth's atmosphere as detector
- imaging atmospheric Cherenkov telescope (IACT) experiments
- highest-energy photons yet observed (~100 TeV)

Current generation of VHE γ -ray experiments

- large mirrors, fine pixels, stereo technique ⇒ high sensitivity
- MAGIC (Canary Isl.); VERITAS (U.S.); CANGAROO-III (Australia)
- *H.E.S.S.* (Namibia): 4 mirrors of 12 m diameter, fast cameras (~ns), observing in stereo on dark, moonless nights

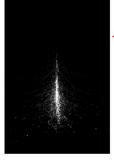
CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

TeV γ-ray astronomy CTA project


Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae

oung and older PWNe WN population and CTA

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Imaging high-energy atmospheric showers

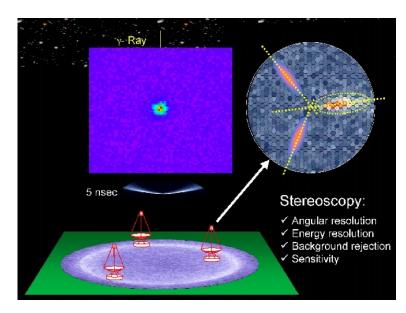
Gamma-ray showers develop quite smoothly in the atmosphere, Their camera images are lean and compact

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


TeV γ-ray astronomy CTA project

Shell-type SNRs TeV shells CTA simulations

Vulsar Wind Nebulae Young and older PWNe PWN population and CTA

・ロト・日本・日本・日本・日本・日本

Stereo imaging and event reconstruction

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

TeV γ-ray astronomy CTA project

Shell-type SNRs TeV shells CTA simulations

Young and older PWNe

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Energy threshold and large telescopes

energy threshold limited by Cherenkov photon collecting area

- MAGIC telescopes : 17-meter diameter telescopes
- energy threshold can reach as low as 25 GeV

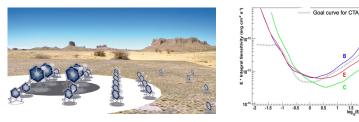
CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

TeV γ-ray astronomy CTA project


Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae

oung and older PWNe WN population and CTA

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

CTA (Cherenkov Telescope Array) project

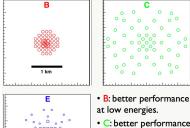
- Next generation of imaging atmospheric Cherenkov telescopes
- One order of magnitude sensitivity improvement over current generation of IACT instruments (e.g. H.E.S.S. or MAGIC)
- Energy range from $\sim 10 \text{ GeV}$ to 100 TeV
- Two sites foreseen : Northern and Southern Hemisphere (better for Galactic physics)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


TeV γ-ray astro CTA project

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae Young and older PWNe

Sample CTA configurations under study

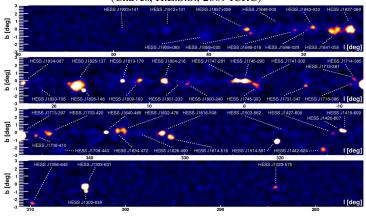
- Many telescopes spread over large area for sensitivity
- Combination of different size telescopes for energy coverage

- C: better performance
- at high energies.
- E: better performance over the whole energy range.

- B: compact distribution with large telescopes
- C: extended distribution with medium telescopes
- **E**: combination of both

CTA Galactic Physics

Y. Gallant, M. Renaud


TeVPA 2010

CTA project

- In what follows, compare performance of three configurations optimised for different energy ranges
- More details on CTA project in poster by I. Puerto et al. and review talk by J. Hinton

The Galactic TeV γ -ray sky (I)

- much improved sensitivity of current generation of Imaging Atmospheric Cherenkov Telescopes (IACTs), inaugurated by HESS (initial 4-telescope array completed >6 years ago)
- ▶ HESS Galactic plane survey : longitudes $\ell \approx -80^\circ$ to 60°

(Chaves, H.E.S.S., 2009 ICRC)

currently about 70 Galactic TeV sources known

CTA Galactic Physics

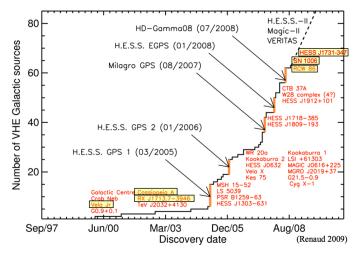
Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

TeV γ-ray astro CTA project

Shell-type SNRs TeV shells CTA simulations


Pulsar Wind Nebulae

Young and older PWNe PWN population and CTA

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

The Galactic TeV γ -ray sky (II)

• Of particular interest are shell-type supernova remants (SNRs)

latest discovery : Tycho's SNR (VERITAS, 2010)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy TA project

Shell-type SNRs

TeV shells CTA simulations

Pulsar Wind Nebulae

Young and older PWNe PWN population and CTA

High-energy observations of (shell-type) SNRs and the origin of Galactic Cosmic Rays

- Supernova remnants are widely considered likely sources of Galactic cosmic rays up to the "knee", $E \sim 3 \times 10^{15} \,\text{eV}$:
 - well-studied shock acceleration mechanism;
 - GCR composition compatible with an SNR origin;
 - energetics require $\sim 10\%$ of total SN energy of 10^{51} erg

X-ray observations of SNRs

- Observational evidence for accelerated e^- (synchrotron)
- indirect evidence for accelerated protons/ions (magnetic field amplification, modified hydrodynamics)

TeV γ -ray observations

- For accelerated p (and ions), hadronic interactions with ambient matter produce π⁰, decaying into two γ-rays which we observe
- On of aims of TeV γ -ray astronomy (e.g. Drury et al. 1994)
- But how to discriminate from **leptonic** (IC) emission?

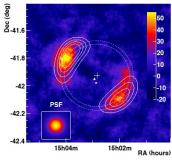
CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy TA project


Shell-type SNRs

TeV shells CTA simulations

Pulsar Wind Nebulae

A historical TeV shell SNR : SN 1006

► H.E.S.S. detection of the remnant of SN 1006:

(Naumann-Godo et al., H.E.S.S., 2009 ICRC ; *A&A*, in press)

130 hours of good-quality data

- morphology correlated with non-thermal X-rays (contours)
- reveals spatial distribution of high-energy particles
- ambiguity between hadronic and leptonic (IC) emission scenarii

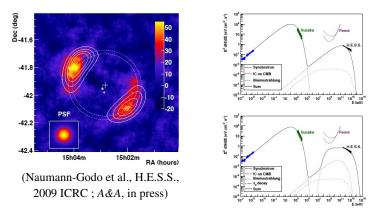
CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy


Shell-type SNRs

TeV shells CTA simulation:

Pulsar Wind Nebulae

A historical TeV shell SNR : SN 1006

► H.E.S.S. detection of the remnant of SN 1006:

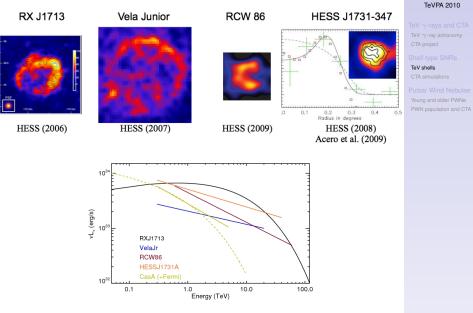
- ► leptonic scenario suggests relatively low *B*-field $\approx 30 \,\mu\text{G}$
- ▶ hadronic scenario require hard spectrum, $E_{\text{cutoff}} \sim 10 \text{ TeV}$

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

$\overline{P} = \nabla \gamma - rays$ and CTA

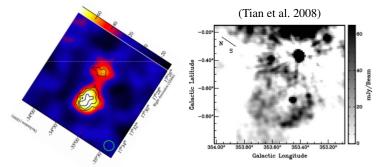

eV γ -ray astronomy

Shell-type SNRs

TeV shells CTA simulations

Pulsar Wind Nebulae

TeV shell SNRs : examples


▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

CTA Galactic Physics

Y. Gallant, M. Renaud

Identifying a new TeV shell : HESS J1731–347

- discovered in *HESS* Galactic plane survey; $\Gamma = 2.3 \pm 0.1 \pm 0.2$
- coincident radio shell discovered with ATCA data: G 353.6–0.7

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

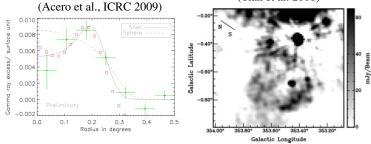
CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy


Shell-type SNRs

TeV shells CTA simulations

Pulsar Wind Nebulae

Identifying a new TeV shell : HESS J1731-347

- discovered in *HESS* Galactic plane survey; $\Gamma = 2.3 \pm 0.1 \pm 0.2$
- coincident radio shell discovered with ATCA data: G 353.6–0.7

deeper HESS observations: evidence for limb-brightening

- X-ray observations of (part of) shell reveal rims of emission with non-thermal spectra! (no evidence for thermal emission)
- X-ray absorption gradient suggest SNR lies behind a CO cloud
- ► $D > 3.5 \,\mathrm{kpc} \Rightarrow L_{1-10 \,\mathrm{TeV}} > 2 \times 10^{34} \,\mathrm{erg/s}, R > 15 \,\mathrm{pc}$

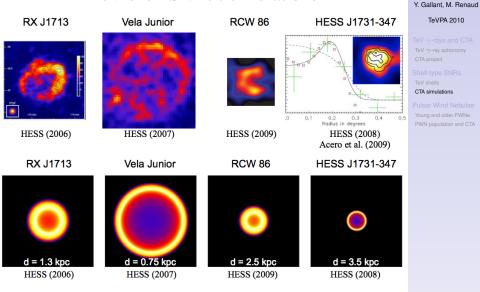
(Tian et al. 2008)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

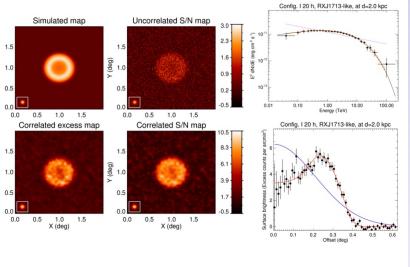

 $_{\rm SV} \gamma$ -ray astronomy

Shell-type SNRs

TeV shells CTA simulations

ulsar Wind Nebulae

TeV shell SNRs : simulations


images simulated with E_{min} threshold that optimises S/N ratio : 0.5–0.7 TeV depending on object spectrum

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

CTA Galactic Physics

Simulated CTA observations : D = 2 kpc

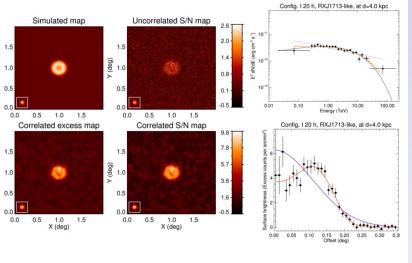
RX J1713.7-like SNR, 20 hour exposure (Galactic plane survey)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

Vulsar Wind Nebulae Young and older PWNe PWN population and CTA

Simulated CTA observations : D = 4 kpc

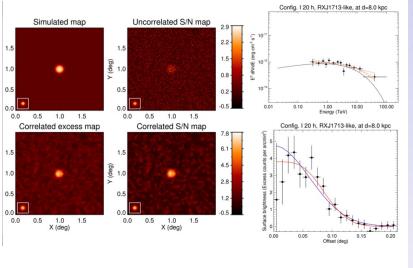
RX J1713.7-like SNR, 20 hour exposure (Galactic plane survey)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

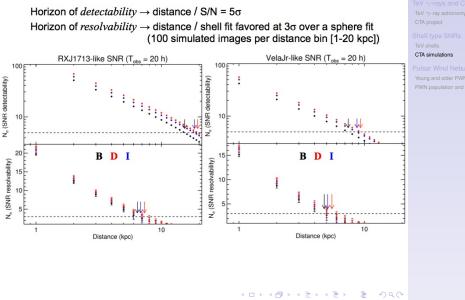
Simulated CTA observations : D = 8 kpc

RX J1713.7-like SNR, 20 hour exposure (Galactic plane survey)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

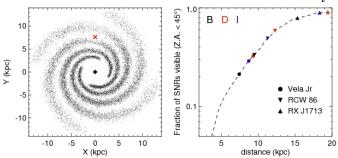

TeV γ -rays and CTA

eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae Young and older PWNe PWN population and CTA

Detectability and resolvability with CTA


CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

Galactic SNR shell population seen by CTA

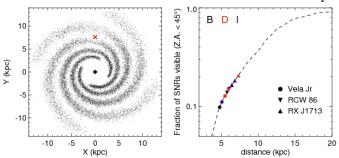
- Simulate Galactic (core-collapse) SNR distribution:
 - assume R_{Gal} distribution of Case & Bhattacharya (1998)
 - concentrated around spiral arms as given by Vallée (2008)
 - with arm dispersion as in model of Drimmel & Spergel (2001)

Horizon of **detectability**

▶ If all SNRs shine \sim 2000 yr in TeV, total of \sim 40 SNRs!

(日本)

CTA Galactic Physics


Y. Gallant, M. Renaud

TeVPA 2010

CTA simulations

Galactic SNR shell population seen by CTA

- Simulate Galactic (core-collapse) SNR distribution:
 - assume R_{Gal} distribution of Case & Bhattacharya (1998)
 - concentrated around spiral arms as given by Vallée (2008)
 - with arm dispersion as in model of Drimmel & Spergel (2001)

Horizon of resolvability

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy TA project

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae

▶ If all SNRs shine \sim 2000 yr in TeV, total of \sim 40 SNRs!

Conclusions on SNR shells

 CTA will dramatically expand the population of known Galactic TeV γ-ray sources

Supernova Remnant Shells

- in a CTA Galactic plane survey, currently known shell SNRs detectable to 10–15 kpc (i.e. throughout most of the Galaxy)
- ▶ if shells shine 2000 yr in TeV, ~40 TeV shells in Galaxy; ~25 detectable (vs 6 currently known)
- ▶ gamma-ray shell directly resolvable by CTA to 5–7 kpc
- more distant SNR shells identifiable through follow-up multi-wavelength (e.g. radio) observations
- ▶ but another source category major for Galactic TeV sky...

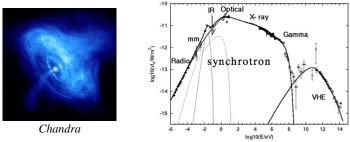
▲□▶▲□▶▲□▶▲□▶ □ のQ@

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

ulsar Wind Nebulae

TeV γ -ray emitting Pulsar Wind Nebulae In the beginning, there was the Crab Nebula...

• "standard candle" of TeV γ -ray astronomy since its discovery

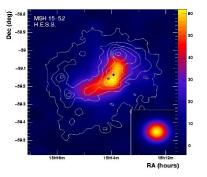
- ► *synchrotron* emission in most of the electromagnetic spectrum, from e^{\pm} accelerated in the pulsar, wind, termination shock
- TeV γ-ray emission results from *Inverse Compton* scattering of lower-energy photons (synchrotron, CMB, IR, starlight...)
- ▶ (hadronic contributions also proposed, e.g. Horns et al. 2007)
- important sources of high-energy cosmic-ray e^+ (and e^-)
- for most other such *plerions*, non-thermal radiation detected only in radio and X-rays — until recently...

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae

I – Young PWNe (and composite SNRs)

- Beyond the Crab, HESS discovered TeV emission from G 0.9+0.1 (A&A, 432, L25, 2005), G 21.5–0.9 and Kes 75 (Djannati-Ataï et al. 2007, ICRC, arXiv:0710.2247)
- VERITAS discovery of TeV emission from plerion G 54.1+0.3 (Acciari et al. 2010, arXiv:1005.0032)
- MSH 15–52 : first PWN angularly resolved in TeV γ-rays
- H.E.S.S., A&A 435, L17 (2005)
- contours: ROSAT
- X-ray thermal shell and non-thermal "jet-like" nebula
- other composites similar in X-rays

IC emission ∝ (approximately uniform) target photon density
⇒ direct inference of spatial distribution of electrons

CTA Galactic Physics

Y. Gallant, M. Renaud

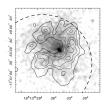
TeVPA 2010

TeV γ -rays and CTA

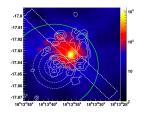
eV γ -ray astronomy TA project

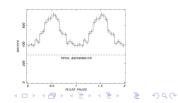
Shell-type SNRs TeV shells

CTA simulations


Pulsar Wind Nebulae

Young and older PWNe


Newly identified young PWNe in SNRs The progressive identification of HESS J1813–178


 XMM revealed an extended non-thermal nebula inside the shell (Funk et al. 2007a)

• XMM found pulsed emission, $\dot{E} = (6.8 \pm 2.7) \times 10^{37}$ erg/s (Gotthelf & Halpern 2009) Brogan et al. (2005) revealed its coincidence with a shell-type radio SNR (and ASCA source)

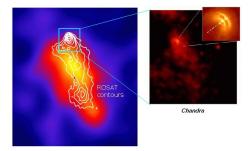
 Chandra revealed a pulsar candidate (Helfand et al. 2007)

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae

II – Older, "offset" PWNe

► TeV γ-rays from the Vela X nebula (HESS, A&A 448, L43, 2006)

coincident with one-sided "jet" (Markwardt & Ögelman 1995)

- ► compact X-ray nebula not conspicuous in TeV γ-rays ⇒ torii and jets bright in X-rays because of higher magnetic field
- offset morphology explained by passage of anisotropic reverse shock, "crushing" the PWN (Blondin et al. 2001)?
- ▶ two TeV PWNe in Kookaburra appear to fall in same category

CTA Galactic Physics

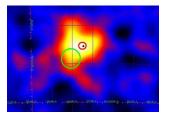
Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations


Pulsar Wind Nebulae

New pulsars coincident with TeV sources

- Discovery with Arecibo of PSR J1856+0245, possibly powering HESS J1857+026, L_γ/Ė ~ 3% (Hessels et al. 2008)
- ▶ coincident with unresolved ASCA source AX J185651+0245

Fermi-LAT discovered pulsars in TeV sources

- PSR J1418–6058 discovered in "Rabbit", second HESS source in Kookaburra (Abdo et al. 2009, Science 325, 840)
- PSR J1907+0602 (*E* = 2.8 × 10³⁶ erg/s) discovered in MGRO J1908+06 / HESS J1908+063 (Abdo et al. 2010, ApJ 711, 64)
- ▶ PSR J1022–5746 discovered in HESS J1023–575 $(\dot{E} = 1.1 \times 10^{37} \text{ erg/s})$: alternative scenario to emission from Westerlund 2 (Dormody et al. 2009)

► About half of Galactic TeV sources are PWNe or candidates

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy TA project

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae

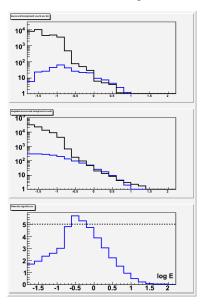
TeV luminosities of established PWNe

 Distances: when pulsar detected (in radio), use DM (dispersion measure) and Galactic electron distribution (Cordes & Lazio 2002)

▶ relatively narrow range of L_{TeV} (Grenier 2009, Mattana et al. 2009)

- no correlation with spin-down power \dot{E} , unlike L_X
- X-rays trace recently injected particles, whereas TeV γ-rays reflect history of injection since pulsar birth
- bright TeV PWNe have Crab-like luminosities; Kes 75 representative of a population of fainter TeV PWNe

TeV γ -rays and CTA


eV γ -ray astronomy

Shell-type SNRs TeV shells CTA simulations

ulsar Wind Nebulae

PWN population and CTA

CTA detectability of a Crab-like PWN Assume HESS Crab spectrum (A&A 457, 899), T = 50 h, subarray B

$$\begin{split} & \textit{N}_{\textit{src}}(E_i) = \textit{A}_{\textit{eff},i} \times T \times F(E_i) \times \Delta E \\ & \textit{N}_{bkg}(E_i) = \textit{R}_{bkg,i} \times T \end{split}$$

$$I_{src}(>E_i) = \sum_{j>i} N_{src}(E_j)$$
$$I_{bkg}(>E_i) = \sum_{j>i} N_{bkg}(E_j)$$

$$S(>E_i) = I_{src,i}/\sqrt{I_{bkg,i} + I_{src,i}}$$

 \Rightarrow can define **optimal energy cut** for faint source detection, a priori for a given spectral shape

for subarray B, E > 250 GeV

・ロト・西ト・ヨト ヨー うへの

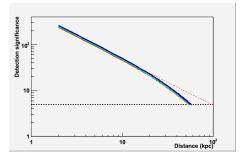
CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

V γ -ray astronomy TA project


Shell-type SNRs TeV shells CTA simulations

ulsar Wind Nebulae

How far away could CTA detect the Crab?

 $F(E) = F_{Crab}(E) \times \left(\frac{2 \,\mathrm{kpc}}{D}\right)^2 \qquad (\text{above was for } D = 50 \,\mathrm{kpc})$

$$I_{src} \propto 1/D^2 \qquad \Rightarrow \qquad S = rac{I_{src}}{\sqrt{I_{bkg} + I_{src}}} \propto 1/D \quad ext{if} \quad I_{src} \gg I_{bkg}$$

 Subarrays

 B
 (E > 250 GeV)

 D
 (E > 600 GeV)

 I
 (E > 250 GeV)

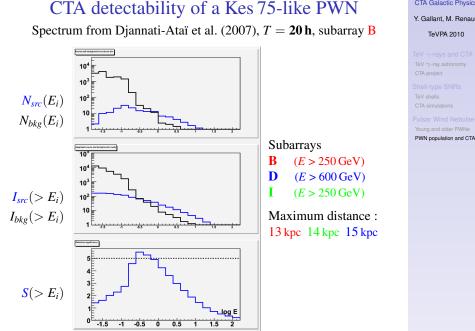
Maximum distance : 53 kpc 54 kpc 57 kpc

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA


eV γ -ray astronomy TA project

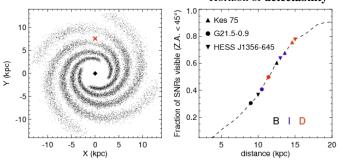
Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae Young and older PWNe

PWN population and CTA

- CTA could detect all Crab-like luminosity sources in the Large Magellanic Cloud, in a moderately deep (50 hours) exposure
- LMC survey for Crab-like PWNe : well-determined distance, in contrast to large uncertainties on PWN distances in the Galaxy

▲□▶▲□▶▲□▶▲□▶ □ のQ@


CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

Galactic PWN population seen by CTA

- Simulate Galactic (core-collapse) SNR distribution:
 - assume R_{Gal} distribution of Case & Bhattacharya (1998)
 - concentrated around spiral arms as given by Vallée (2008)
 - ▶ with arm dispersion as in model of Drimmel & Spergel (2001)
- ► Ignore displacement from pulsar birth place due to velocity kick

▶ If all PWNe shine $\sim 10\,000$ yr in TeV, total of ~ 200 PWNe!

Horizon of detectability

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy TA project

Shell-type SNRs TeV shells

Pulsar Wind Nebulae

Young and older PWNe PWN population and CTA

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Conclusions (II)

Pulsar Wind Nebulae

- ► CTA will detect luminous PWNe like the Crab to the distance of the Large Magellanic Cloud ⇒ luminosity-limited survey
- ▶ if PWNe shine 10000 yr in TeV, ~200 TeV PWNe in Galaxy
- ► in a CTA Galactic plane survey, weaker PWNe like Kes 75 detectable to ~13–15 kpc (i.e. in large fraction of Galaxy)
- identifiable through follow-up MWL observations (non-thermal X-ray nebulae, pulsar search)

General considerations

- similarly for other Galactic TeV γ-ray sources : binaries, SNRs interacting with molecular clouds, star forming regions...
- CTA will find large number of previously unknown high-energy particle sources in the Galaxy; multi-wavelength follow-up observations essential for identification
- increased sensitivity and resolution of CTA will yield improved spectral and morphological data on currently known sources

CTA Galactic Physics

Y. Gallant, M. Renaud

TeVPA 2010

TeV γ -rays and CTA

eV γ -ray astronomy TA project

Shell-type SNRs TeV shells CTA simulations

Pulsar Wind Nebulae Young and older PWNe PWN population and CTA