Status and Prospects of China Jinping Deep Underground Laboratory (CJPL) and China Dark Matter EXperiment (CDEX)

Qian Yue
Department of Engineering Physics
TsingHua University
May 13, 2010
Outline:

- Survey of Low background Experiments in China
- The site of the new deep UL in China
- The condition of CJPL
- Plan for the construction of CJPL
- CDEX collaboration and plan
Brief Survey of Low Background Experiment in China

- Double Beta Decay @ Coal Mine in Beijing, 1980s
- Dark Matter Search as a member of DAMA, 1990s
- Reactor neutrino experiment of TEXONO, 1997
- Dark Matter Search of KIMS Collaboration, 2000
- DayaBay neutrino experiment, 2004
- CJPL and CDEX, 2009
Compositions of the Universe: We only Understand ~4% !!!???

Dark Energy: “We know less than Nothing!”

Dark Matter: “We know Nothing!” (but perhaps have reasonable guesses)

Standard Model Matter: Understood
The site of a new UL in China
The site of a new UL in China

Ertan Hydropower Development Company (EHDC)
JinPing Tunnel

YaLong River
350Km

ChengDu
KunMing
Huanghe
Guizhou
Yalong River and Jinping Mountain

120km
30min from Chengdu
By Air

Xichang
Road and Tunnel
Logistic Condition of this UL
The basic conditions of CJPL

- Peak: 4193m
- Maximum rock overburden: ~2500m
- Length of Tunnel: 17.5km
- Rock cover larger than 1500m: >70%
- Two tunnels for transportation
China Jinping Deep Underground Laboratory
(CJPL)
Comparison of main ULs in the world

(UNIT: M.W.E)

- 2100m Y2L, Korea
- 2450m Canfranc, Spain
- 2700m Kamioka, Japan
- 2800m Boulby, UK
- 3500m INO, India
- 3500m LNGS, Italy
- 4400m Baksan, Russia
- 4800m Modane, France
- 4500m DUSEL, USA
- 6000m SNO, Canada
- ~7500m CJPL, China

Muon Intensity, m⁻² y⁻¹

Tunnel

Mine

Deep Underground Lab
Cosmic-ray Flux

Muon flux:
--LNGS 100 times more than CJPL
--Y2L 3000 times more than CJPL
Agreement between EHDC and THU
Signed

(MOE, SASAC, SDIC, NNFSC, THU, EHDC)
PARTICLE PHYSICS

Chinese Scientists Hope to Make Deepest, Darkest Dreams Come True

Particle physicist Yue Qian had his eureka moment in front of the TV set. For over a decade, Chinese scientists have longed for an underground laboratory that would enable them to join efforts across the globe to detect dark matter, observe neutrinos, and watch for exotic particle physics phenomena. Searches for suitable sites repeatedly came up empty-handed. But last August, after Yue caught a Aerofax report on the completion of two tunnels piercing Jinping Mountain in Sichuan Province, he felt that the long quest for such a lab might finally be over.

After months of negotiations, on 8 May Tsinghua University in Beijing, where Yue is an associate professor, signed an agreement with the tunnels’ owner, Ertan Hydropower Development Co., to hollow out an experimental chamber. The Jinping lab would be the deepest underground science facility in the world, edging out—by 100 meters or so—the Deep Underground Science and Engineering Laboratory that the U.S. National Science Foundation may build in an abandoned mine in Lead, South Dakota. By placing sensors deep in the earth, physicists hope to reduce spurious signals from cosmic rays. China’s subterranean aspirations have been circulating in Asia for months; the international community will get its first glimpse of the project at a dark matter workshop in Shanghai on 15 June and at an astroparticle and underground physics conference in Rome next month.

An underground lab has been a dream for several generations of Chinese scientists, says Wang Yifang, a particle physicist at the Institute of High Energy Physics of the Chinese Academy of Sciences in Beijing. Past candidates sites, including an underground aviation museum near Beijing and coal and gold mines around the country, all were judged too shallow or impractical. Jinping, on the other hand, “looks ideal,” Wang says. The lab would have approximately 2500 meters of marble and sandstone above it; more shielding than any similar site in the world. Researchers will be able to make a 1-hour drive from a regional airport to the lab’s front door. And the tunnels are sized for construction equipment, promising smooth delivery of instruments and supplies.

Wang cautions that the lab is not a done deal. “It’s really at a very early stage,” he says. To start with, Yue’s group must verify that the rock is strong enough to support several generations of Chinese scientists, says Wang Yifang, a particle physicist at the Institute of High Energy Physics of the Chinese Academy of Sciences in Beijing. Past candidates include a site near Beijing and a coal and gold mine in Sichuan Province, although the Jinping site is preferable because it offers more shielding and a shorter drive to the lab.

Yue doesn’t yet know what the first phase will cost, as design efforts are just starting. “But [Tsinghua] university has promised strong support,” he says, and they are seeking funds from the science ministry. If the project develops as hoped, says Yue, “we would want to get more universities and institutions from China and around the world to join us and push this project ahead.”

The good fortune befell physicists thanks to a mammoth hydroelectric project about 350 kilometers southwest of Chengdu, the capital of Sichuan Province, where the Yangtze River makes a 150-kilometer-long U-turn around Jinping Mountain. Ertan Hydropower is building two dams: Jinping 1 at the start of the U-turn and Jinping 2 at the end. To move workers and materials between the construction sites, Ertan blasted a pair of 17-kilometer-
The plan of CJPL construction

Phase-I: 6*6*40m Lab (RED Square)
China Darkmatter EXperiment (CDEX)

J. P. Cheng, Z. Deng, D. Han, K.J. Kang, Y.J. Li, Y.L. Li, Y. Wang,
Q.F. Wu, Q. Yue, Y.G. Yang, Z. Zhang
(Tsinghua University, THU)
(Sichuan University, SCU)
X.Q. Li, Y. Xu, C.X. Yu
(Nankai University, NKU)
K.J. Dong, X.C. Ruan, Z.Y. Zhou
(China Institute of Atomic Energy, CIAE)
J. Li
(Institute of High Energy Physics, IHEP)
(Ertan Hydropower Development Company, EHDC)
K.M. Cheung, S.C. Lee
(National Tsinghua University, NTHU)
H.T. Wang
(TEXONO Collaboration)
S.K. Kim
(KIMS Collaboration)
CDEX schedule

Phase-I (2010.9-2011.3)
- 20g ULE-HPGe detector @ CDUL
- Shielding system construction
- HPGe detector for radioactive measurement
- Radon monitor system

Phase-II (2010.12-2011.12)
- ULE-HPGe detector (~1500g)

Phase-III (2012-)
- ULE-HPGe detector (~10kg scale)
Detector and Shielding

- LN2 Dewar
- OFHC
- Anti-Compton Detector
- Ge Target
- Crystat
Detector Scale-up Plans: Point Contact Ge Detector

- Position-sensitive from drift-profile pulse shape
- 500-g built ; KS data taking Nov 2008 at KS lab
- 1000-g detector delivered Dec 2010
Start point:

20g
ULE-HPGe

PHYSICAL REVIEW D 79, 061101(R) (2009)

New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV

S. T. Lin,1 H. B. Li,1 X. Li,2 S. K. Lin,1 H. T. Wong,1,2* M. Deniz,1,3 B. B. Fang,2 D. He,2 J. Li,2,4 C. W. Lin,1 F. K. Lin,1 X. C. Ruan,5 V. Singh,1,6 A. K. Soma,1,6 J. J. Wang,1 Y. R. Wang,1 S. C. Wu,1 Q. Yue,2 and Z. Y. Zhou3

(TEXONO Collaboration)

1Institute of Physics, Academia Sinica, Taipei 115, Taiwan
2Department of Engineering Physics, Tsinghua University, Beijing 100084, China
3Department of Physics, Middle East Technical University, Ankara 06531, Turkey
4Institute of High Energy Physics, Chinese Academy of Science, Beijing 100080, China
5Department of Nuclear Physics, Institute of Atomic Energy, Beijing 102413, China
6Department of Physics, Banaras Hindu University, Varanasi 221005, India

(Received 10 December 2007; revised manuscript received 22 May 2008; published 12 March 2009)
TEXONO : 20 g ULEGe at 220 eV threshold ⇒ low WIMP masses [PRD 2009]

Data Taking at KS with 500g Point-Contact Ge Underway
Shielding System@CJPL

OFHC 10cm
PE(B) 15cm
Pb 20cm
PE 1m
1ton Ge Array Detector system
CDEX target

Cross-section \([\text{cm}^2]\) (normalised to nucleon)

WIMP Mass \([\text{GeV}/c^2]\)
Summary

- CJPL with 2500 rock overburden has been constructed and internal setup is under installation. In Sept. 2010, CJPL will be run formally.

- CJPL with dimensions: 6.5m(W)*8m(H)*40m(L)

- A new Collaboration CDEX has been setup for DM search with ULE-HPGe detector. CDEX will start to run its first prototype detector system from September 2010 on.

- The neutron flux, muon flux, gamma background, Radon concentration will be measured elaborately.

- Ultra-Low background measurement system based HPGe detector will be setup for material selection for dark matter experiment and another application.
Welcome you Visit THU!