Galactic Sources, Magnetic Fields

and the Energy-Dependent composition of UHECRs.

TeV Particle Astrophysics 2010

TeV Particle Astrophysics 2010

Outline

• The cosmic ray spectrum

- The cosmic ray spectrum
- The Pierre Auger Observatory (PAO) and its energy-dependent chemical composition

- The cosmic ray spectrum
- The Pierre Auger Observatory (PAO) and its energy-dependent chemical composition
- The role of galactic sources

- The cosmic ray spectrum
- The Pierre Auger Observatory (PAO) and its energy-dependent chemical composition
- The role of galactic sources
- diffusion, anisotropy, spectral features

- The cosmic ray spectrum
- The Pierre Auger Observatory (PAO) and its energy-dependent chemical composition
- The role of galactic sources
- diffusion, anisotropy, spectral features

[AC, Kusenko, Nagataki]

- $E < 1 \,\mathrm{GeV}$ solar modulation make studies of the primary cosmic ray spectrum very complex
- $1 \,\mathrm{GeV} < E < 10^5 \,\mathrm{GeV}$ galactic origin (SNR)
- $10^5 \,\mathrm{GeV} < E < 10^9 \,\mathrm{GeV}$ galactic origin (supernova explosion into stellar wind)
 - $E > 10^9 \,\mathrm{GeV}$ Ultra High Energy Cosmic Rays (UHECRs)

UHECRs above the "ankle" ($E > 10^9 \,\text{GeV}$) are believed to be of extragalactic origin for two reasons:

UHECRs above the "ankle" ($E > 10^9 \,\text{GeV}$) are believed to be of extragalactic origin for two reasons:

• lack of plausible galactic sources

UHECRs above the "ankle" ($E > 10^9 \,\text{GeV}$) are believed to be of extragalactic origin for two reasons:

- lack of plausible galactic sources
- lack of galactocentric anisotropy, inconsistent with retaining protons in Galactic micro-Gauss fields.

UHECRs above the "ankle" ($E > 10^9 \,\text{GeV}$) are believed to be of extragalactic origin for two reasons:

- lack of plausible galactic sources
- lack of galactocentric anisotropy, inconsistent with retaining protons in Galactic micro-Gauss fields.

Both of these reasons can be challenged

UHECRs above the "ankle" ($E > 10^9 \,\text{GeV}$) are believed to be of extragalactic origin for two reasons:

- lack of plausible galactic sources
- lack of galactocentric anisotropy, inconsistent with retaining protons in Galactic micro-Gauss fields.

Both of these reasons can be challenged Both of these reasons should be challenged in view of a recent PAO discovery

Pierre Auger energy-dependent chemical composition

[Auger PRL 104 (2010) 091101]

Pierre Auger energy-dependent chemical composition

[Auger PRL 104 (2010) 091101]

The composition gets heavier with energy

Pierre Auger energy-dependent chemical composition

[Auger PRL 104 (2010) 091101]

The composition gets heavier with energy What could cause this effect?

TeV Particle Astrophysics 2010

Not Observed by HiRes

[Auger PRL 104 (2010) 091101, HiRes ApJ 622 (2005) 910, HiRes arXiv:0910.4184]

TeV Particle Astrophysics 2010

Interpreting the PAO Results

There exist two possible solutions to this puzzle:

There exist two possible solutions to this puzzle:

• The segregation occurs at the source with a heavy element favored acceleration mechanism.

This is unlikely because of photodissociation

There exist two possible solutions to this puzzle:

• The segregation occurs at the source with a heavy element favored acceleration mechanism.

This is unlikely because of photodissociation

• The acceleration mechanism affects all the particles the same way and the segregation occurs during the transport of the nuclei.

There exist two possible solutions to this puzzle:

• The segregation occurs at the source with a heavy element favored acceleration mechanism.

This is unlikely because of photodissociation

• The acceleration mechanism affects all the particles the same way and the segregation occurs during the transport of the nuclei.

This is exactly what you would expect for Galactic sources...

There exist two possible solutions to this puzzle:

• The segregation occurs at the source with a heavy element favored acceleration mechanism.

This is unlikely because of photodissociation

• The acceleration mechanism affects all the particles the same way and the segregation occurs during the transport of the nuclei.

This is exactly what you would expect for Galactic sources... Why?

Diffusion

Two different regimes depending on the energy of the particle

Diffusion

critical energy E_0 where $r_L = l_c$

for
$$E < E_0$$
, we get $l_c >> r_L$

- $\bullet\,$ mean free path $\sim l$
- $D = \frac{l}{3} \equiv D_0$

for $E > E_0$, we get $l_c \sim r_L$

• mean free path >> l

•
$$D = D_0 \left(\frac{E}{E_0}\right)^2$$

Diffusion

critical energy E_0 where $r_L = l_c$

for
$$E < E_0$$
, we get $l_c >> r_L$

- mean free path $\sim l$
- $D = \frac{l}{3} \equiv D_0$

for $E > E_0$, we get $l_c \sim r_L$

• mean free path >> l

•
$$D = D_0 \left(\frac{E}{E_0}\right)^2$$

E_0 depends on the charge of the nuclei

Diffusion with Non-Unit Charge

For a particle with charge $q_i = eZ_i$, we get a critical energy $E_{0,i}$ with $r_{L,i} = l_c$:

- $r_{L,i} = \frac{E}{Bq_i}$
- $E_{0,i} = eBl_cZ_i$
- $E_{0,i} = Z_i \times (10^8 \,\mathrm{eV}) \left(\frac{B}{3 \times 10^{-6} \,\mathrm{G}}\right) \left(\frac{l_c}{0.3 \,\mathrm{kpc}}\right)$

Diffusion with Non-Unit Charge

For a particle with charge $q_i = eZ_i$, we get a critical energy $E_{0,i}$ with $r_{L,i} = l_c$:

- $r_{L,i} = \frac{E}{Bq_i}$
- $E_{0,i} = eBl_cZ_i$

•
$$E_{0,i} = Z_i \times (10^8 \,\mathrm{eV}) \left(\frac{B}{3 \times 10^{-6} \,\mathrm{G}}\right) \left(\frac{l_c}{0.3 \,\mathrm{kpc}}\right)$$

The diffusion coefficient is therefore:

$$egin{aligned} m{D_i(E)} = \left\{egin{aligned} D_0 \left(rac{E}{E_{0,i}}
ight)^{\delta_1} & E \leq E_{0,i}, \ D_0 \left(rac{E}{E_{0,i}}
ight)^{(2-\delta_2)} & E > E_{0,i} \end{aligned}
ight. \end{aligned}$$

Diffusion Equation

For a **point-like source**:

$$Q_i(E, \vec{r}) = Q_0 \xi_i \left(\frac{E}{E_{0,i}}\right)^{-\gamma} \delta(\vec{r})$$

We solve the following differential equation:

$$\frac{\partial n_i}{\partial t} - \vec{\nabla} (D_i \vec{\nabla} n_i) + \frac{\partial}{\partial E} (b_i n_i) = Q_i (E, \vec{r}, t) + \sum_k \int P_{ik}(E, E') n_k(E') dE'$$

Diffusion Equation

For a **point-like source**:

$$Q_i(E, \vec{r}) = Q_0 \xi_i \left(\frac{E}{E_{0,i}}\right)^{-\gamma} \delta(\vec{r})$$

We solve the following differential equation:

$$\frac{\partial n_i}{\partial t} - \vec{\nabla} (D_i \vec{\nabla} n_i) + \frac{\partial}{\partial E} (b_i n_i) = Q_i (E, \vec{r}, t) + \sum_k \int P_{ik}(E, E') n_k(E') dE'$$

Below GZK energies, energy losses are negligible thus we only consider diffusion terms.

Solution

The flux is:

$$n_i(E,r) = rac{Q_0}{4\pi r D_i(E)} \left(rac{E}{E_{0,i}}
ight)^{-\gamma}$$

with diffusion time t_D :

$$t_D \sim rac{R^2}{D_{m i}} \sim 10^7 {
m yr} \left(rac{R}{10~{
m kpc}}
ight)^2 \left(rac{26}{Z_{m i}} imes rac{10^{19}\,{
m eV}}{E}
ight)^{2-\delta_2}$$

TeV Particle Astrophysics 2010

Consequences

TeV Particle Astrophysics 2010

Consequences

• Diffusion is energy denpendent

TeV Particle Astrophysics 2010

Consequences

• Diffusion is energy denpendent

The spectral slope changes at $E \sim E_{0,i}$

• Diffusion is energy denpendent

The spectral slope changes at $E \sim E_{0,i}$

• The flux drops dramatically because the particles escape from the galaxy

• Diffusion is energy denpendent

The spectral slope changes at $E \sim E_{0,i}$

- The flux drops dramatically because the particles escape from the galaxy
- Diffusion time depends on charge

• Diffusion is energy denpendent

The spectral slope changes at $E \sim E_{0,i}$

- The flux drops dramatically because the particles escape from the galaxy
- Diffusion time depends on charge

Diffusion times for nuclei are longer than for protons of the same energy

• Diffusion is energy denpendent

The spectral slope changes at $E \sim E_{0,i}$

- The flux drops dramatically because the particles escape from the galaxy
- Diffusion time depends on charge

Diffusion times for nuclei are longer than for protons of the same energy

• The flux drops for protons at lower energies than heavy nuclei

TeV Particle Astrophysics 2010

The Source Problem

The Source Problem

Galactic sources are likely to exist, and more pertinently, to have existed:

• Hypernovae

The Source Problem

- Hypernovae
- Collapsars

The Source Problem

- Hypernovae
- Collapsars
- Unusual Supernovae

The Source Problem

- Hypernovae
- Collapsars
- Unusual Supernovae
- GRBs

GRBs as Possible Galactic Candidates

- GRBs have been proposed as sources of *extragalactic* UHECRs [Vietri; Waxman; Dermer]
- Galactic GRBs have been considered as sources of UHECRs [Dermer *et al.*, Biermann *et al.*]
- Long GRBs: probably unusual supernova explosions or hypernovae. Short GRBs: probably mergers of compact stars.
- Both should have happened in our own Galaxy in the past, at a combined rate of one per $10^4 10^5$ years.
- Past Galactic GRBs have been considered as the explanation of $511 \, \mathrm{keV}$ line from the Galactic Center [Bertone, et al.; Parizot et al.; AC, Kusenko], as well as the electron excess of PAMELA/Fermi [loka; AC, Kusenko]

TeV Particle Astrophysics 2010

Distribution of GRBs in the Milky Way

Supernovae or long GRBs, assuming they follow star counts [Bahcall et al.]

Short GRBs, based on observed distribution in other galaxies [Cui, Aoi, Nagataki]

TeV Particle Astrophysics 2010

Comparison with Pierre Auger data Protons, Fe, Overall Spectrum

[AC, Kusenko, Nagataki]

Energy in UHECR per source (GRB, hypernova, etc.) is 10^{44} erg above 10^{19} eV.

TeV Particle Astrophysics 2010

Galactocentric anisotropy (sources follow stars)

[AC, Kusenko, Nagataki]

TeV Particle Astrophysics 2010

Clusters of events from recent/closest GRBs

supernovae/long GRBs

short **GRBs**

TeV Particle Astrophysics 2010

Clusters of events from recent/closest GRBs

supernovae/long GRBs

short GRBs

Extragalactic protons would also contribute to the overall spectrum above 10^{18} eV , and any anisotropy would be diluted by magnetic fields

Summary

The energy-dependent composition observed by PAO motivates alternative solutions to the origin of UHECRs: **Galactic Sources**

Summary

The energy-dependent composition observed by PAO motivates alternative solutions to the origin of UHECRs: Galactic Sources

- Energy dependent diffusion coefficient offers a solution to the dominance of nuclei at $10^{18}-10^{19}\,{\rm eV}$
- The diffusion process within galactic magnetic fields maintains the galactocentric anisotropy below a few percents
- Many possible source exist within the Milky Way As long as event rate exceeds $1/10^8$ year
- The apparent clustering could be the result of the most recent event

TeV Particle Astrophysics 2010

Extra Slides

TeV Particle Astrophysics 2010

Magnetic Field Length Scale

Magnetic Field Length Scale

• Best fit for average random field and scale length $B\sim5\,\mu{\rm G}$ and $l_c\sim55\,{\rm pc}$ [Rand & Kulkarni, ApJ 343, 760]

Magnetic Field Length Scale

• Best fit for average random field and scale length $B\sim5\,\mu{\rm G}$ and $l_c\sim55\,{\rm pc}$ [Rand & Kulkarni, ApJ 343, 760]

Based on single cell-size models of Galactic random fields

Magnetic Field Length Scale

- Best fit for average random field and scale length $B\sim5\,\mu{
 m G}$ and $l_c\sim55\,{
 m pc}$ [Rand & Kulkarni, ApJ 343, 760] Based on single cell-size models of Galactic random fields
- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10 100 \,\mathrm{pc}$ scales

Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \,\mu\text{G}$ and $l_c \sim 55 \,\text{pc}$ [Rand & Kulkarni, ApJ 343, 760] Based on single cell-size models of Galactic random fields
- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10-100\,{\rm pc}$ scales

Energy transferred to smaller scales via direct cascade

Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \,\mu\text{G}$ and $l_c \sim 55 \,\text{pc}$ [Rand & Kulkarni, ApJ 343, 760] Based on single cell-size models of Galactic random fields
- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10-100\,\mathrm{pc}$ scales

Energy transferred to smaller scales via direct cascade Energy transferred to larger scales via inverse cascade of magnetic helicity

Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \,\mu\text{G}$ and $l_c \sim 55 \,\text{pc}$ [Rand & Kulkarni, ApJ 343, 760] Based on single cell-size models of Galactic random fields
- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10-100\,\mathrm{pc}$ scales

Energy transferred to smaller scales via direct cascade Energy transferred to larger scales via inverse cascade of magnetic helicity

Dramatic change in the spectral slope of the magnetic energy $E_B(k)$ around $\sim 0.1 \, \rm kpc$

Composite Magnetic Energy Spectrum

[Han, Ferriere and Manchester, ApJ. 610, 820 (2004)]

TeV Particle Astrophysics 2010

Composition

TeV Particle Astrophysics 2010

Composition

External Shock

TeV Particle Astrophysics 2010

Composition

External Shock

• Large dissipation radii

Composition

External Shock

- Large dissipation radii
- Nuclei can easily survive

Composition

External Shock

- Large dissipation radii
- Nuclei can easily survive

Internal Shock

The nuclei can survive if:

Composition

External Shock

- Large dissipation radii
- Nuclei can easily survive

Internal Shock

The nuclei can survive if:

• Internal shock radius is large

Composition

External Shock

- Large dissipation radii
- Nuclei can easily survive

Internal Shock

The nuclei can survive if:

- Internal shock radius is large
- Large Lorentz factor of the relativistic jets

Composition

External Shock

- Large dissipation radii
- Nuclei can easily survive

Internal Shock

The nuclei can survive if:

- Internal shock radius is large
- Large Lorentz factor of the relativistic jets
- (And/Or) In the presence of a synchrotron self-absorption break

