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The view from a Neutrino Telescope

To search for galactic sources, a
neutrino telescope uses the Earth as a
shield against atmospheric muons.

IceCube is at the South Pole.
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The link to Gamma-Ray Astronomy

Benchmark source: SNR RXJ 1713.7-3946
Right Ascension: 17:13:00 h
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Declination: -39:45:00 deg
Very young and the brightest SNR of the
Southern Hemisphere
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OUTLINE

1. Requirements to observe Galactic Neutrino Sources with soft spectra:

a. Optimize IceCube for low neutrino energies (<100 TeV).
— IceCube-DeepCore subarray

b. Open the field of view of IceCube to the hemisphere directly above
the telescope.

— Atmospheric Muon Veto

c. Reduce the background of atmospheric neutrinos which dominates
over the expected signal.
— Atmospheric Neutrino Veto
2. Discovery Potential to RXJ 1713.7-3946

3. Sensitivity to RXJ 1713.7-3946

4. Conclusion and future perspectives



The IceCube-DeepCore neutrino telescope

Som -

1450".

DeepCore is a compact Cherenkov detector at the bottom center of Icecube.
(cf. Plenary talk of D.Williams, Status of the IceCube Neutrino Observatory)

IceTop

AMANDA

» DeepCore consists of 6 additional strings of 360
high quantum efficiency photo-tubes.

« Denser spacing of the photo-tubes compared
to IceCube.

» Detector is complete since January 2010.

 Two additional strings will be deployed in
2011.

Purpose:

* Provide new capabilities compared to AMANDA
(decomissioned in May 2009)

« Enhance the sensitivity of IceCube for low
energies (< 1 TeV).

« Lower the detection threshold of IceCube by an
order of magnitude to below 10 TeV.



The Atmospheric muon Veto

Veto atmospheric muons while keeping a good passing rate of starting neutrinos.
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Events with hits in the veto region (shaded) are
treated as atmospheric muon background.
Events with hits in the fiducial region are signal.

cylinder around String 36.
R=200m, H=350m (6 DC strings + 7
surrounding IC strings.)

Sources: [astro-ph]:0907.2263 and Sebastian Euler.'s thesis.



Atmospheric muon Veto: L1 & L2 cuts

* Level 1 cuts aim to reduce the atmospheric background for 4 orders of magnitude, before
reconstruction, using only the topology of the hits.

— Keep events with hits only in the Fiducial Volume

— Background rejection: ~ 5 x 10

» Level 2 cuts are based on the output of the vertex reconstruction algorithm.
(. LLHR - Likelihood for the track to be starting inside the Fiducial Volume.

» The reconstructed vertex position is described by the Z-coordinate and the radius R
L from the center of lceCube-DeepCore:
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L2 Cuts: Optimization for Point Source search

Reject the maximum number of atmospheric muon background while keeping the
maximum number of signal events starting inside IceCube-DeepCore.
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Atmospheric neutrino veto
Phys.Rev.D79,043009 (2009) [astro-ph]: 0812.4308, S.Schonert et al.

. At Tev-PeV energies, the opening angle between a downward-going atmospheric v, and the
u produced by the decay of the same parent meson in the atmosphere is very small.

— a downward-going atmospheric v, has a certain probability to reach the detector

accompanied by its partner y .

— veto a downward-going atmospheric v, by the detection of a correlated atmospheric p.

* The veto performances depend on the atmospheric muon veto efficiency, the depth of the

telescope and on the neutrino energy and direction.
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Point source analysis: SNR RXJ 1713.7-3946

 Monte Carlo simulations with IceCube 80-strings and DeepCore 6-strings configurations.
« Keep events in a zenith band of width 10° around the source: 45.25° < 6 < 55.25°
» Background: - atmospheric neutrinos (conventional flux, Honda 2006) < 2600 events
- atmospheric muons (CORSIKA) < 20 events
 Signal: muon-neutrinos starting inside IceCube-DeepCore: 2800 events

« Signal events are distributed according to:
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Track reconstruction algorithms are under development:

 Gaussian source PSF:

—» Angular resolution of IceCube-DeepCore:

Q= 1 20° 0= 2° (mean AMANDA angular resolution)

Neutrino energies considered: 100 GeV < Ev <1 PeV.



Unbinned Likelihood Ratio method

J. Braun et al., Astropart.Phys.29:299-305 (2008)

» The events are given a probability to belong to the source with a certain uncertainty o.

_lxi_xS|

Source PDF with o: DeepCore angular resolution (2°)

» The probability for an event to be an atmospheric background event is given by:

Background PDF with w: solid angle of the zenith band.

* The Likelihood for a source to be at location Xs with a strength Ns is therefore:
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N: total number of events
(signal + background)

» The likelihood L is maximized to obtain the best estimate of the number of signal events.



Test Statistic

» Mean source strength: <N_> =0 - 60 events.

FLUXSCALE = 1000

<Ns>
<Ns-best>

-

=]

[ =]
|

— Scale the flux model by a factor FLUXSCALE.
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* Downward fluctuations of the background:
10 < N, < 60

* Signal + Background simulation: 1000 experiments -
for each FLUXSCALE. 201
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randomized azimuth.
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» For each experiment we record the test statistic A to determine the significance of an
observed deviation from the null hypothesis.
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HOZL (XS’ 0) The data consists only of background events.
H

s:L(XS, NS) The data consists of NS signal events from the source and background events.



Significance and discovery potential

Procedure
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» The integral distribution of A for the background alone is calculated at the location of the
source.

» The values of A corresponding to 30 and 50 are calculated.

» The discovery potential at 30 and 50 are the number of experiments with A above the 30
and 50 threshold, respectively.



Discovery Fluxes: SNR RXJ 1713.7-3946

« 30 and 50 confidence level detection probability vs. Poisson mean number of source
signal events (atmospheric muon background rejection: 10®).
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Sensitivity to SNR RXJ 1713.7-3946
Neyman 90% C.L. Upper Limit (Amsler et al. 2008)
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Neyman-Pearson lemma:

Reject H_if P (A > A |H,) = 90%

Median

H0 — Null hypothesis.

The data consists only of background

H1 — The data consists of signal and background.

— H90% = 5.86 events

Sensitivity at the 90% C.L (after one vear):
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Influence of the Atmospheric Neutrino Veto

Improvement Discovery Potential/Sensitivity of ~ 40%

Discovery Fluxes after 1 year (unit: TeV'1.cm'2.sr'1.s'1):
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Influence of the L2 cuts and the geometry of the Fiducial Volume

Fiducial Volume 13 strings (Radius=200m, Height=350m):

R <110m, Z < -250 and LLHR < -17 — Background rejection: 107"/ Signal passing rate: 24%

R <180m, Z < -210 and LLHR < -16 — Background rejection: 10 / Signal passing rate: 46%

R <250m, Z <-140 and LLHR < -8 — Background rejection: 10 / Signal passing rate: 85%
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Fiducial Volume 25 strings (Radius=400m,

Height=350m):

Increase in atmospheric muons (after L1 cuts): +82%
Increase in starting signal events (after L1 cuts): +53%

Background rejection 10
Signal passing rate: 52%

R<190m, Z <-140 and LLHR < -7



Sensitivity to SNR RXJ 1713.7-3946
After one year, at the 90% C.L.
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CONCLUSIONS and OUTLOOK

* An innovative and exploratory approach to Neutrino Astronomy is under development to
observe steady soft-spectra galactic neutrino sources.

« Avery preliminary sensitivity to the benchmark source RXJ 1713.7-3946 has been
presented.

 The atmospheric muon veto and IceCube-DeepCore can be used to open
the field of view of IceCube to the Southern Hemisphere below 1 PeV.

 The atmospheric neutrino veto can be used to discriminate part of the source signal
(depending on the source location and the neutrino energy) from the background of atmospheric
Neutrinos.

— Sensitivity to SNR RXJ 1713.7-3946 improved by 40%.



NEXT STEPS

* Develop dedicated simulations (based on CORSIKA) to assess the atmospheric
neutrino veto capability in practice.

* Include muon track and energy reconstruction algorithms.
— Determine lceCube-DeepCore angular resolution as a function of the energy.

 Include energy term in the likelihood maximization (expected improvement of about 30%)
as described in J.Braun et al., Astroparticle Physics 29 (2008) 299-305

« Estimate the sensitivity to other astrophysical objects of interest
(H.E.S.S. SNRs, Galactic Center region) throughout the Southern Hemisphere.

* |Investigate potential extensions of IceCube-DeepCore to enhance the sensitivity.

* Analysis of the first data from the complete lceCube-DeepCore subarray in combination with
the complete IceCube telescope (after February 2011).

Thank you!
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