The Secondary Universe

Cosmic Ray Astronomy with Secondary Gamma Rays and Neutrinos

Warren Essey UCLA July 20, 2010

Warren Essey The Secondary Universe

The Secondary Universe

The talk will be based on

• A new interpretation of the gamma-ray observations of distant active galactic nuclei

W. Essey and A. Kusenko - Astroparticle Physics 33, 81 (2010)

• Secondary photons and neutrinos from cosmic rays produced by distant blazars W. Essey, O.E. Kalashev, A. Kusenko and J.F. Beacom - Phys.Rev.Lett. 104, 141102 (2010)

Cosmic Rays

- Cosmic rays detected over a very wide energy range up to $E{\sim}~10^{11} GeV$
- Source of highest energy cosmic rays unknown, but thought to be extragalactic
- Some correlations with AGN have been reported (*Tinyakov* and *Tkachev*, and *Pierre Auger Observatory*)

Gamma Ray Astronomy

- \bullet Observed at energies up to $\sim 10~\text{TeV}$
- Best described by diffusive shock model (*Malkov & Drury 2001*)
- Can be described by hadronic or leptonic models
- Gamma ray power law spectra $\frac{dN}{dE} \sim E^{-\Gamma}$ with $\Gamma \geq 1.5$ predicted by most models (Aharonian et al. 2006; Malkov & OC Drury 2001)
- Numerical simulations show harder electron spectra for relativistic shocks (*Stecker et al 2007*), but for Synchrotron-Self-Compton (SSC) scenario the resulting spectra would experience substantial softening from Klein-Nishina effects making $\Gamma \geq 1.5$ (*Böttcher et al 2008*)
- Gamma rays pair produce with Extragalactic Background Light (EBL) to soften observed spectra

・ロン ・回 と ・ ヨ と ・ ヨ と

The EBL

- Many competing models using many differing philosophies
- Strict lower limit set by galaxy counts
- Gamma ray data could give upper limits due to attenuation from pair production

・ロト ・回ト ・ヨト

Figure from Krennrich et al 2008

The change in gamma ray spectral slope $\Delta\Gamma$ from the GeV to TeV energy range for BL Lac objects seen by Fermi. Points taken from *(Abdo et al 2009)*

Measured spectrum of blazar 1ES 0229+200 at z=0.140. Fitted power law spectrum of Γ = 2.5±0.19_{stat}±+0.10_{syst} which implies intrinsic spectrum Γ_{int} = 0.6 - 1.5 depending on EBL model. (*Aharonian et al 2007*)

Measured spectrum of blazar 1ES 0347-121 at z=0.188. Fitted power law spectrum of Γ = 3.1 ± 0.23_{stat} ± +0.10_{syst} which implies intrinsic spectrum Γ_{int} = 1.69 using EBL model close to lower limits. (*Aharonian et al 2007*)

A⊒ ▶ ∢ ∃

Measured spectrum of blazar 1ES 1101-232 at z=0.186. Fitted power law spectrum of $\Gamma = 2.94 \pm 0.21$ which implies intrinsic spectrum $\Gamma_{int} = 1.51 \pm 0.19$ depending on EBL model. (Aharonian et al 2007)

- \bullet Blazars at redshifts $\gtrsim 0.1$ have particularly hard spectra
- Krennrich et al used a set of 3 such blazars to show $\Gamma = 1.28 \pm 0.20$ or harder using lower limits on EBL
- Nearby blazars show softer spectra and Fermi measured a median $\Gamma\sim 1.9$ for blazars in the GeV energy range (Abdo et al 2009)

- $\bullet\,$ Blazars at redshifts $\gtrsim 0.1$ have particularly hard spectra
- Krennrich et al used a set of 3 such blazars to show $\Gamma = 1.28 \pm 0.20$ or harder using lower limits on EBL
- Nearby blazars show softer spectra and Fermi measured a median $\Gamma \sim 1.9$ for blazars in the GeV energy range (Abdo et al 2009)
- Can this suprising specral behaviour be explained by some new effect?

Secondaries from Cosmic Rays

- Cosmic rays comprised of protons will interact with EBL and CMB along the way to Earth
- The dominate reactions will be

$$p + \gamma_b \Rightarrow p + e^+ + e^-$$

$$p + \gamma_b \Rightarrow N + \pi' s \Rightarrow \gamma' s + \nu' s$$

- Neutrons and pions decay very quickly
- e^+e^- pairs upscatter CMB photons to higher energies
- If intergalactic magnetic fields (IGMF) sufficiently low, then secondaries will point back to source

The Simulation

- Ran a large scale Monte Carlo tracking individual particles
- Outgoing distribution functions for photopion production produced using Sophia package (*Mucke et al 2000*)
- Used protons as primary constituent of cosmic rays with power law spectrum $\frac{dN}{dE} \sim E^{-\Gamma}$ with $\Gamma \sim 2 2.5$
- Included gamma rays with power law spectrum $\frac{dN}{dE} \sim E^{-\Gamma}$ with $\Gamma \sim 1.5 2$
- Used an EBL model based on observed luminosity functions (Stecker et al) rather than lower limits, including evolution with redshift
- Included intergalactic magnetic field (IGMF)

Choice of Sources

Conditions for an ideal source to test model

- Observed at high redshift and high energies to allow attenuation of primary gamma rays
- Not seen by Fermi at low energies to confirm lack of primary gamma rays
- Hard spectrum difficult to explain with current models

Choice of Sources

Conditions for an ideal source to test model

- Observed at high redshift and high energies to allow attenuation of primary gamma rays
- Not seen by Fermi at low energies to confirm lack of primary gamma rays
- Hard spectrum difficult to explain with current models
- 6 such sources, we chose 1ES 0229+200 at z = 0.14 as it extends all the way to ~ 10 TeV (Aharonian et al 2007)

Results

The differential flux of primary gamma rays for a source located at z=0.14 (such as 1ES 0229+200). An instrincic power law spectrum with $\Gamma = 1.5$ and IGMF of 10^{-15} G with a 10 kpc correlation length were used. Points shown were measured by HESS collaboration

Results

The differential flux of secondary gamma rays for a source located at z=0.14 (such as 1ES 0229+200) with a luminosity $\sim 10^{47}$ erg/s. An IGMF of $B_{IGMF} \sim 10^{-15}$ G with a 10 kpc correlation length. Points shown were measured by HESS collaboration. Spectrum hardens at low energies due to IGMF.

- Huge uncertainty in IGMF with current upper limits set to 10^{-6} 10^{-12} G depending on model (Dolag et al 2004)
- $\bullet\,$ Important to note that only upper limits exist for IGMF and perfectly consistent with current models down to $10^{-18}~{\rm G}$
- Cosmic rays may provide a way to test this
- For our set of sources the TeV gamma rays are observed which places an upper limit on IGMF
- Lower energy gamma rays are not seen by Fermi which sets a lower limit on IGMF

伺下 イヨト イヨト

Photons arrving at z = 0 surface from a 10⁶GeV electron starting at z = 0.01. The arrival direction is with respect to the electrons initial direction. The different colors correspond to different IGMF strengths ranging from $10^{-12} - 10^{-18}$ G

- \bullet Hess detection of 1ES 0229+200 sets $\rm B_{IGMF} \lesssim 10^{-14} G$
- $\bullet\,$ Fermi upper limits set $B_{IGMF}\gtrsim 10^{-18} {\rm G}$
- Thus $B_{\rm IGMF} \sim 10^{-17} 10^{-15} {\rm G}$

・ 回 と ・ ヨ と ・ ヨ と

2

- \bullet Hess detection of 1ES 0229+200 sets $\rm B_{IGMF} \lesssim 10^{-14} G$
- $\bullet\,$ Fermi upper limits set $B_{\rm IGMF}\gtrsim 10^{-18}{\rm G}$
- Thus $B_{\rm IGMF} \sim 10^{-17} 10^{-15} \text{G}$
- This gives a good estimate of the IGMF based on experimental data that is not just an upper limit.
- Consistent with Fermi images of distant AGN (Ando and Kusenko, 2010; Ando's talk)

向下 イヨト イヨト

Secondary gamma rays with low IGMF have some testable consequences:

| 4 回 2 4 U = 2 4 U =

æ

Secondary gamma rays with low IGMF have some testable consequences:

• Different scaling due to interactions along the way Expect $\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D}$, which should be testable in the future with more data.

Secondary gamma rays with low IGMF have some testable consequences:

- Different scaling due to interactions along the way Expect $\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D}$, which should be testable in the future with more data.
- No short scale time variability For sources with z > 0.1 variability has been observed at E \sim 200GeV but never in the TeV range. In fact for 1ES0229+200 the "data show no evidence for significant variability on any time scale."

Secondary gamma rays with low IGMF have some testable consequences:

- Different scaling due to interactions along the way Expect $\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D}$, which should be testable in the future with more data.
- No short scale time variability For sources with z > 0.1 variability has been observed at $E \sim 200 \text{GeV}$ but never in the TeV range. In fact for 1ES0229+200 the "data show no evidence for significant variability on any time scale."
- Halos should be seen around the source at the GeV scale.

Secondary gamma rays with low IGMF have some testable consequences:

- Different scaling due to interactions along the way Expect $\frac{1}{D^2} \times P(\text{Interaction}) \sim \frac{1}{D}$, which should be testable in the future with more data.
- No short scale time variability For sources with z > 0.1 variability has been observed at $E \sim 200 \text{GeV}$ but never in the TeV range. In fact for 1ES0229+200 the "data show no evidence for significant variability on any time scale."
- Halos should be seen around the source at the GeV scale.
- An accompanying high energy neutrino signal should be seen.

Halos

Measured angular distribution of stacked set of Fermi AGN (Ando, Kusenko 2010)

Calculated angular distribution for AGN at z=0.1 with an IGMF of $10^{-15}~{\rm G}$ with a correlation length of 10 kpc normalized to data

< ≣⇒

æ

イロト イヨト イヨト

Halos

Measured fraction of photons arriving outside Fermi PSF for stacked set of Fermi AGN (Ando, Kusenko 2010)

- Results from simulation match experimental results well
- $f_{halo} \sim 0.10$ for 3-10 GeV bin
- $f_{halo} \sim 0.17$ for 10 100 GeV bin

ж.

Neutrinos

Calculated gamma ray and neutrino spectra for 1ES 0229+200 for various high energy cutoffs in the proton spectrum. A proton spectrum with $\Gamma = 2$ was used (arXiv:0912.3976v1)

Future Work

- Fit more sources to improve estimates on IGMF, EBL and AGN properties
- Extend code to include heavy nuclei
 - Different threshold and nuclear photo-disintegration
 - Different neutrino signature
 - Might be able to set limits on composition of cosmic rays from gamma ray and neutrino signals
- Include more realistic magnetic fields
- Extend to GRB cosmic rays

Summary

- Cosmic rays from AGN produce seconday gamma rays and neutrinos on the way to Earth
- The secondary gamma rays give a good fit to TeV sources at high redshift and energy, even for EBL models that were claimed to be excluded
 - Calculated spectra robust for various proton injection models
 - One parameter fit to data
- Secondary neutrinos should be visible with neutrino experiments like IceCube
- Unique scaling allowing possibility of detection of sources at higher redshift
- $\bullet\,$ First ever estimate of intergalactic magnetic field, showing the magnitude is $\sim 10^{-17}$ G 10^{-15} G
- Halo structure similar to newly detected AGN halos from Fermi data with correlation length \sim 10 kpc
- Future work can provide information on EBL, IGMF, AGN properties and cosmic ray composition