Magnetars as sources of ultrahigh energy cosmic rays

Possible sources of UHECRs: energetics

Magnetars

Blasi, Epstein, Olinto 2000 Arons 2003

 $E = 3 \times 10^{21} Z \eta_1 \Omega_4^2 \mu_{33} \text{ eV}$

5% of magnetar population would suffice

Possible sources of UHECRs: anisotropy signatures

Continuously emitting sources

FRII in arrival direction of highest energy events unless

- particularly strong extragalactic magnetic field
- UHECR = heavy nuclei

Transient sources

- 1) source already extinguished when UHECR arrives correlation with LSS with no visible counterpart
- 2) low occurrence rate (of GRB/magnetars) low probability of observing events from a source unless scattering of arrival times due to magnetized regions

enhanced correlation btw UHE events and foreground matter **distortion of arrival direction maps according to LSS**

K.K. & Lemoine 2008b Kalli, Lemoine, K.K., in prep, cf. poster

- **3) no counterpart in neutrinos, photons, grav. waves** will be observed in arrival directions of UHECRs
- 4) magnetars and GRBs have same anisotropy signature

Auger Coll. 2008

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

Gravitational waves?

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

Gravitational waves?

GRBs: shocks produce only faint GW

e.g. Piran 2004

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

Gravitational waves?

GRBs: shocks produce only faint GW

e.g. Piran 2004

magnetars:

dipolar magnetic field B_* , principal inertial momentum I, initial rotation velocity Ω_i

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

Gravitational waves?

GRBs: shocks produce only faint GW

e.g. Piran 2004

magnetars:

dipolar magnetic field B_* , principal inertial momentum I, initial rotation velocity Ω_i

GW signal specific spectrum + span in frequency

Regimbau & de Freitas Pacheco 2006 Dall'Osso & Stella 2007 Regimbau & Mandic 2008

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

Gravitational waves?

GRBs: shocks produce only faint GW

e.g. Piran 2004

magnetars:

dipolar magnetic field B_* , principal inertial momentum *I*, initial rotation velocity Ω_i

GW signal specific spectrum + span in frequency

Regimbau & de Freitas Pacheco 2006 Dall'Osso & Stella 2007 Regimbau & Mandic 2008

UHE neutrinos?

Waxman & Bahcall 1997, Murase et al. 2006, 2008

secondary neutrinos from hadronic interactions of UHECRs accelerated in shocks inside GRBs

Murase et al. 2009

secondary neutrinos from hadronic interactions in wind ejecta of newly born magnetar (proton case)

caution: dependency on Physics inside source and in source environment + composition of UHECR

Gravitational waves?

GRBs: shocks produce only faint GW

e.g. Piran 2004

magnetars:

dipolar magnetic field B_* , principal inertial momentum *I*, initial rotation velocity Ω_i

GW signal specific spectrum + span in frequency

Regimbau & de Freitas Pacheco 2006 Dall'Osso & Stella 2007 Regimbau & Mandic 2008

observation of specific spectrum of GW

= evidence of adequate magnetar parameters for acceleration of UHECR

Magnetars and UHECRs

Duncan & Thompson 1992

Magnetar characteristics (theoretical predictions):

- isolated neutron star
- fast rotation at birth ($P_i \sim 1 \text{ ms}$)
- strong surface dipole fields ($B_* \sim 10^{15-16} \text{ G}$)

Plausible explanation for observed Anomalous X-ray Pulsars (AXP) and Soft Gamma Repeaters (SGR)

e.g. Koveliotou 1998, 1999, Baring & Harding 2002

Magnetars and UHECRs

Duncan & Thompson 1992

Magnetar characteristics (theoretical predictions):

- isolated neutron star
- fast rotation at birth ($P_i \sim 1 \text{ ms}$)
- strong surface dipole fields ($B_* \sim 10^{15-16} \text{ G}$)

Plausible explanation for observed Anomalous X-ray Pulsars (AXP) and Soft Gamma Repeaters (SGR)

e.g. Koveliotou 1998, 1999, Baring & Harding 2002

Magnetars as progenitors of UHECRs: idea introduced during the "AGASA era"

Blasi, Epstein, Olinto 2000

Galactic magnetars + iron particles aim: isotropic distribution in sky

Arons 2003

extragalactic, faint GZK cut-off due to hard spectral index

Acceleration mechanism in magnetars

Blasi et al. 2000 Arons 2003

B

Acceleration mechanism in magnetars

Blasi et al. 2000 Arons 2003

light cylinder

$$r < R_{\rm L} \equiv \frac{c}{\Omega}$$

 $B(r) = \frac{1}{2}B(R_*)\left(\frac{R_*}{r}\right)^3$

Acceleration mechanism in magnetars

relativistic wind

$$B \propto \frac{1}{r}$$
induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{c} \times \mathbf{B}$
leads to voltage drop:

$$\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$$

$$= \frac{\Omega^2 B_* R_*^3}{2c^2}$$

$$\sim 3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 \text{ s}^{-1}}\right)^2$$

B

Acceleration mechanism in magnetars

light cylinder

$$r < R_{\rm L} \equiv \frac{c}{\Omega}$$

 $B(r) = \frac{1}{2}B(R_*)\left(\frac{R_*}{r}\right)^3$

relativistic wind $B \propto \frac{1}{r}$ induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{2} \times \mathbf{B}$ leads to voltage drop: $\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$ $= \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ particles accelerated to energy: $E(\Omega) = q\eta \Phi = q\eta \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{21} \text{ eV} \mathbb{Z}_{\eta_1} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ **10%: fraction of voltage** experienced by particles

Blasi et al. 2000

10%: fraction of voltage experienced by particles

Blasi et al. 2000

 $B \propto \frac{1}{r}$

relativistic wind $B \propto \frac{1}{r}$ induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{2} \times \mathbf{B}$ leads to voltage drop: $\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$ $= \frac{\Omega^2 B_* R_*^3}{2c^2}$ $\sim 3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ particles accelerated to energy: $E(\Omega) = q\eta \Phi = q\eta \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{21} \text{ eV} Z \eta_1 \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ 10%: fraction of voltage experienced by particles

Blasi et al. 2000

relativistic wind $B \propto \frac{1}{r}$ induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{2} \times \mathbf{B}$ leads to voltage drop: $\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$ $= \frac{\Omega^2 B_* R_*^3}{2c^2}$ $\sim 3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ particles accelerated to energy: $E(\Omega) = q\eta \Phi = q\eta \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{21} \text{ eV} \mathbb{Z}_{\eta_1} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ 10%: fraction of voltage experienced by particles

Blasi et al. 2000

relativistic wind $B \propto \frac{1}{r}$ induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{2} \times \mathbf{B}$ leads to voltage drop: $\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$ $= \frac{\Omega^2 B_* R_*^3}{2c^2}$ $\sim 3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ particles accelerated to energy: $E(\Omega) = q\eta \Phi = q\eta \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{21} \text{ eV} \mathbb{Z}_{\eta_1} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ 10%: fraction of voltage experienced by particles

Blasi et al. 2000

Arons 2003 relativistic wind $B \propto \frac{1}{r}$ induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{2} \times \mathbf{B}$ leads to voltage drop: $\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$ $= \frac{\Omega^2 B_* R_*^3}{2c^2}$ $\sim 3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ particles accelerated to energy: $E(\Omega) = q\eta \Phi = q\eta \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{21} \text{ eV} Z \eta_1 \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ 10%: fraction of voltage experienced by particles

Blasi et al. 2000

relativistic wind $B \propto \frac{1}{r}$ induced electric field: $\mathbf{E} = \frac{\mathbf{v}}{2} \times \mathbf{B}$ leads to voltage drop: $\Phi \sim rE = rB = R_{\rm L}B(R_{\rm L})$ $= \frac{\Omega^2 B_* R_*^3}{2c^2}$ $\sim 3 \times 10^{22} \text{ V} \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ particles accelerated to energy: $E(\Omega) = q\eta \Phi = q\eta \frac{\Omega^2 B_* R_*^3}{2c^2}$ ~ $3 \times 10^{21} \text{ eV} Z \eta_1 \frac{B_*}{2 \times 10^{15} \text{ G}} \left(\frac{R_*}{10 \text{ km}}\right)^3 \left(\frac{\Omega}{10^4 s^{-1}}\right)^2$ 10%: fraction of voltage experienced by particles

Blasi et al. 2000

surface of polar cap

Goldreich-Julian density

surface of polar cap

Goldreich-Julian density

energy spectrum for one magnetar:

$$\frac{\mathrm{d}N_{\mathrm{i}}}{\mathrm{d}E} = \dot{N}_{\mathrm{i}} \left(-\frac{\mathrm{d}t}{\mathrm{d}\Omega}\right) \frac{\mathrm{d}\Omega}{\mathrm{d}E}$$

spin-down rate:

$$-\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{\dot{E}_{\mathrm{EM}} + \dot{E}_{\mathrm{grav}}}{I\Omega} = \frac{1}{9} \frac{B_*^2 R_*^6 \Omega^3}{Ic^3} \left[1 + \left(\frac{\Omega}{\Omega_{\mathrm{g}}} \right)^2 \right] \quad \text{angular velocity at which e.m. losses = grav. losses}$$

surface of polar cap

Goldreich-Julian density

energy spectrum for one magnetar:

$$\frac{\mathrm{d}N_{\mathrm{i}}}{\mathrm{d}E} = \dot{N}_{\mathrm{i}} \left(-\frac{\mathrm{d}t}{\mathrm{d}\Omega}\right) \frac{\mathrm{d}\Omega}{\mathrm{d}E}$$
$$\frac{\mathrm{d}N_{\mathrm{i}}}{\mathrm{d}E} = \frac{9}{2} \frac{c^2 I}{ZeB_* R_*^3 E} \left(1 + \frac{E}{E_{\mathrm{g}}}\right)^{-1}$$

spin-down rate:

$$-\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{\dot{E}_{\mathrm{EM}} + \dot{E}_{\mathrm{grav}}}{I\Omega} = \frac{1}{9} \frac{B_*^2 R_*^6 \Omega^3}{Ic^3} \left[1 + \left(\frac{\Omega}{\Omega_{\mathrm{g}}} \right)^2 \right] \quad \text{angular velocity at which} \\ \text{e.m. losses = grav. losses}$$

spin-down rate:

energy spectrum for one magnetar:

$$\frac{\mathrm{d}N_{\mathrm{i}}}{\mathrm{d}E} = \dot{N}_{\mathrm{i}} \left(-\frac{\mathrm{d}t}{\mathrm{d}\Omega}\right) \frac{\mathrm{d}\Omega}{\mathrm{d}E} \qquad -\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{\dot{E}_{\mathrm{EM}} + \dot{E}_{\mathrm{grav}}}{I\Omega} = \frac{1}{9}\frac{B}{B}$$
$$\frac{\mathrm{d}N_{\mathrm{i}}}{\mathrm{d}E} = \frac{9}{2}\frac{c^{2}I}{ZeB_{*}R_{*}^{3}E} \left(1 + \frac{E}{E_{\mathrm{g}}}\right)^{-1} \text{hard injection spectrum: -1 slope}$$

 $= \frac{1}{9} \frac{B_*^2 R_*^6 \Omega^3}{Ic^3} \left[1 + \left(\frac{\Omega}{\Omega_g} \right)^2 \right] \quad \text{angular velocity at which} \\ \text{e.m. losses} = \text{grav. losses}$

6

Possible way to reconcile the magnetar spectrum with observed data

distribution of magnetar rates according to starting voltage

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} = \frac{n_{\mathrm{m}}}{\Phi_{\mathrm{i,max}}} \frac{s-1}{(\Phi_{\mathrm{i,max}}/\Phi_{\mathrm{i,min}})^{s-1}-1} \left(\frac{\Phi_{\mathrm{i}}}{\Phi_{\mathrm{i,max}}}\right)^{-s}$$

$$\Phi_{i,min} \leq \Phi \leq \Phi_{i,max}$$

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} = \frac{n_{\mathrm{m}}}{\Phi_{\mathrm{i,max}}} \frac{s-1}{(\Phi_{\mathrm{i,max}}/\Phi_{\mathrm{i,min}})^{s-1} - 1} \left(\frac{\Phi_{\mathrm{i}}}{\Phi_{\mathrm{i,max}}}\right)^{-s}$$

$$\Phi_{i,min} \leq \Phi \leq \Phi_{i,max}$$

$$\Phi_{\rm i} = \frac{E_{\rm i}}{q\eta}$$

equivalent to distribution in max acceleration energy:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}E_{\mathrm{i}}} = \frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} \frac{\mathrm{d}\Phi_{\mathrm{i}}}{\mathrm{d}E_{\mathrm{i}}} = n_{\mathrm{m}}\chi \left(\frac{E_{\mathrm{i}}}{E_{\mathrm{i,max}}}\right)^{-s}$$

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} = \frac{n_{\mathrm{m}}}{\Phi_{\mathrm{i,max}}} \frac{s-1}{(\Phi_{\mathrm{i,max}}/\Phi_{\mathrm{i,min}})^{s-1} - 1} \left(\frac{\Phi_{\mathrm{i}}}{\Phi_{\mathrm{i,max}}}\right)^{-s}$$

$$\Phi_{i,min} \leq \Phi \leq \Phi_{i,max}$$

$$\Phi_{\rm i} = \frac{E_{\rm i}}{q\eta}$$

equivalent to distribution in max acceleration energy:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}E_{\mathrm{i}}} = \frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} \frac{\mathrm{d}\Phi_{\mathrm{i}}}{\mathrm{d}E_{\mathrm{i}}} = n_{\mathrm{m}}\chi \left(\frac{E_{\mathrm{i}}}{E_{\mathrm{i,max}}}\right)^{-s}$$

$$J(E) = \int_{E_{i,\min}}^{E_{i,\max}} \frac{\partial J(E, E_i)}{\partial E_i} dE_i$$

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} = \frac{n_{\mathrm{m}}}{\Phi_{\mathrm{i,max}}} \frac{s-1}{(\Phi_{\mathrm{i,max}}/\Phi_{\mathrm{i,min}})^{s-1} - 1} \left(\frac{\Phi_{\mathrm{i}}}{\Phi_{\mathrm{i,max}}}\right)^{-s}$$

$$\Phi_{i,min} \leq \Phi \leq \Phi_{i,max}$$

$$\Phi_{\rm i} = \frac{E_{\rm i}}{q\eta}$$

equivalent to distribution in max acceleration energy:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}E_{\mathrm{i}}} = \frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} \frac{\mathrm{d}\Phi_{\mathrm{i}}}{\mathrm{d}E_{\mathrm{i}}} = n_{\mathrm{m}}\chi \left(\frac{E_{\mathrm{i}}}{E_{\mathrm{i,max}}}\right)^{-s}$$

$$J(E) = \int_{E_{i,\min}}^{E_{i,\max}} \frac{\partial J(E, E_i)}{\partial E_i} dE_i$$

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} = \frac{n_{\mathrm{m}}}{\Phi_{\mathrm{i,max}}} \frac{s-1}{(\Phi_{\mathrm{i,max}}/\Phi_{\mathrm{i,min}})^{s-1} - 1} \left(\frac{\Phi_{\mathrm{i}}}{\Phi_{\mathrm{i,max}}}\right)^{-s}$$

$$\Phi_{i,min} \leq \Phi \leq \Phi_{i,max}$$

$$\Phi_{\rm i} = \frac{E_{\rm i}}{q\eta}$$

equivalent to distribution in max acceleration energy:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}E_{\mathrm{i}}} = \frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} \frac{\mathrm{d}\Phi_{\mathrm{i}}}{\mathrm{d}E_{\mathrm{i}}} = n_{\mathrm{m}}\chi \left(\frac{E_{\mathrm{i}}}{E_{\mathrm{i,max}}}\right)^{-s}$$

$$J(E) = \int_{E_{i,\min}}^{E_{i,\max}} \frac{\partial J(E, E_i)}{\partial E_i} dE_i$$

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} = \frac{n_{\mathrm{m}}}{\Phi_{\mathrm{i,max}}} \frac{s-1}{(\Phi_{\mathrm{i,max}}/\Phi_{\mathrm{i,min}})^{s-1}-1} \left(\frac{\Phi_{\mathrm{i}}}{\Phi_{\mathrm{i,max}}}\right)^{-s}$$

$$\Phi_{i,min} \leq \Phi \leq \Phi_{i,max}$$

$$\Phi_{\rm i} = \frac{E_{\rm i}}{q\eta}$$

equivalent to distribution in max acceleration energy:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}E_{\mathrm{i}}} = \frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\Phi_{\mathrm{i}}} \frac{\mathrm{d}\Phi_{\mathrm{i}}}{\mathrm{d}E_{\mathrm{i}}} = n_{\mathrm{m}}\chi \left(\frac{E_{\mathrm{i}}}{E_{\mathrm{i,max}}}\right)^{-s}$$

$$J(E) = \int_{E_{i,\min}}^{E_{i,\max}} \frac{\partial J(E,E_i)}{\partial E_i} dE_i$$

magnetar rate necessary at z=0:

$$n_{\rm m} = \epsilon_{\rm m} n_{\rm g} \nu_{\rm m} / f \sim 10^{-6} \text{ Mpc}^{-3} \text{ yr}^{-1}$$

~ hypernovae rate

gravitational stochastic background spectrum:

Regimbau & Mandic 2008

$$\Omega_{\rm gw}(\nu_0) = 5.7 \times 10^{-56} \left(\frac{0.7}{h_0}\right)^2 n_{\rm m,0} \nu_0 \int_0^{z_{\rm sup}} \frac{R_{\rm SFR}(z)}{(1+z)^2 \Omega(z)} \frac{\mathrm{d}E_{\rm gw}}{\mathrm{d}\nu} [\nu_0(1+z)] \,\mathrm{d}z$$

cosmological param.

 $\ \, \text{if} \ \nu_0 < \frac{\nu_{\rm i}}{1+z_{\rm max}} \\ \ \, \text{otherwise},$

 $z_{\rm sup} = \begin{cases} z_{\rm max} \\ \frac{\nu_{\rm i}}{\nu_0} - 1 \end{cases}$

gravitational stochastic background spectrum:

Regimbau & Mandic 2008

$$\Omega_{\rm gw}(\nu_0) = 5.7 \times 10^{-56} \left(\frac{0.7}{h_0}\right)^2 n_{\rm m,0} \nu_0 \int_0^{z_{\rm sup}} \frac{R_{\rm SFR}(z)}{(1+z)^2 \Omega(z)} \frac{\mathrm{d}E_{\rm gw}}{\mathrm{d}\nu} [\nu_0(1+z)] \,\mathrm{d}z$$

observed frequency related to rotation velocity

 $\nu = \Omega/\pi$

 $\text{if } \nu_0 < \frac{\nu_{\rm i}}{1+z_{\rm max}} \\ \text{otherwise,}$

 $z_{\rm sup} = \begin{cases} z_{\rm max} \\ \frac{\nu_{\rm i}}{\nu_0} - 1 \end{cases}$

distribution of initial voltages:

$$\Phi_{\rm i} = f(\nu_{\rm i}, B_*)$$

distribution of initial voltages:

$$\Phi_{\rm i} = f(\nu_{\rm i}, B_*)$$

generation of B by $\alpha \omega$ -dynamo: *Thompson & Duncan 1992* $B_* = \alpha \nu_i, \quad \alpha \in [10^{13}, 10^{16}] \text{ G Hz}^{-1}$

lead to distribution of initial frequencies:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\nu_{\mathrm{i}}} = n_{\mathrm{m}}\chi \frac{3q\eta\pi^{2}}{c^{2}} \frac{\alpha R_{*}^{3}}{2} \nu_{\mathrm{i}}^{2} \left(\frac{\nu_{\mathrm{i}}}{\nu_{\mathrm{i,max}}}\right)^{-3s}$$

distribution of initial voltages:

$$\Phi_{\rm i} = f(\nu_{\rm i}, B_*)$$

generation of B by $\alpha \omega$ -dynamo: *Thompson & Duncan 1992* $B_* = \alpha \nu_i, \quad \alpha \in [10^{13}, 10^{16}] \text{ G Hz}^{-1}$

lead to distribution of initial frequencies:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\nu_{\mathrm{i}}} = n_{\mathrm{m}}\chi \frac{3q\eta\pi^{2}}{c^{2}} \frac{\alpha R_{*}^{3}}{2} \nu_{\mathrm{i}}^{2} \left(\frac{\nu_{\mathrm{i}}}{\nu_{\mathrm{i,max}}}\right)^{-3s}$$

$$\beta = 100 \qquad \beta = 1000$$

increasing thickness: $\alpha = 10^{13,14,15} \text{ G Hz}^{-1}$
 $E_{i,\min} = 3 \times 10^{18} \text{ eV}, E_{i,\max} = 10^{21.5} \text{ eV}$

$$E_{\rm i} = q\eta \frac{\pi^2 \alpha R_*^3}{2c^2} \nu_{\rm i}^3$$

distribution of initial voltages:

 $\Phi_{\rm i} = f(\nu_{\rm i}, B_*)$

generation of B by $\alpha \omega$ -dynamo: *Thompson & Duncan 1992* $B_* = \alpha \nu_i, \quad \alpha \in [10^{13}, 10^{16}] \text{ G Hz}^{-1}$

lead to distribution of initial frequencies:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\nu_{\mathrm{i}}} = n_{\mathrm{m}}\chi \frac{3q\eta\pi^{2}}{c^{2}} \frac{\alpha R_{*}^{3}}{2} \nu_{\mathrm{i}}^{2} \left(\frac{\nu_{\mathrm{i}}}{\nu_{\mathrm{i,max}}}\right)^{-3s}$$

 $\beta = 100 \qquad \beta = 1000$ increasing thickness: $\alpha = 10^{13,14,15} \text{ G Hz}^{-1}$ $E_{i,\min} = 3 \times 10^{18} \text{ eV}, E_{i,\max} = 10^{21.5} \text{ eV}$

$$E_{\rm i} = q\eta \frac{\pi^2 \alpha R_*^3}{2c^2} \nu_{\rm i}^3$$

distribution of initial voltages:

$$\Phi_{\rm i} = f(\nu_{\rm i}, B_*)$$

generation of B by $\alpha \omega$ -dynamo: *Thompson & Duncan 1992* $B_* = \alpha \nu_i, \quad \alpha \in [10^{13}, 10^{16}] \text{ G Hz}^{-1}$

lead to distribution of initial frequencies:

$$\frac{\mathrm{d}n_{\mathrm{m}}}{\mathrm{d}\nu_{\mathrm{i}}} = n_{\mathrm{m}}\chi \frac{3q\eta\pi^{2}}{c^{2}} \frac{\alpha R_{*}^{3}}{2} \nu_{\mathrm{i}}^{2} \left(\frac{\nu_{\mathrm{i}}}{\nu_{\mathrm{i,max}}}\right)^{-3s}$$

 $\beta = 100 \qquad \beta = 1000$ increasing thickness: $\alpha = 10^{13,14,15} \text{ G Hz}^{-1}$ $E_{i,\min} = 3 \times 10^{18} \text{ eV}, E_{i,\max} = 10^{21.5} \text{ eV}$

$$E_{\rm i} = q\eta \frac{\pi^2 \alpha R_*^3}{2c^2} \nu_{\rm i}^3$$

Summary: recipe to identify UHECR sources

Astrophysical sources with **sufficient energetics**: FRII/FSRQ GRB magnetars

How do we discriminate them?

By increasing the statistics and looking at anisotropy signatures: if anisotropy persists and no visible counterpart, source is probably transient

If the source is transient, how do we tell apart GRBs from magnetars?

By looking at **diffuse secondary emissions**:

UHE neutrino spectrum Murase et al. 2009

observation of specific spectrum of GW

= evidence of adequate magnetar parameters for acceleration of UHECR

distribution of initial voltages needed to reconcile spectrum generated by magnetars with observed data

lead to characteristic gw spectrum signal higher of 2-3 orders of magnitude in region ν <100 Hz measurable with upcoming instruments

UHECR spectrum

Summary: recipe to identify UHECR sources

By looking at **diffuse secondary emissions**:

UHE neutrino spectrum *Murase et al. 2009*

observation of specific spectrum of GW

= evidence of adequate magnetar parameters for acceleration of UHECR

distribution of initial voltages needed to reconcile spectrum generated by magnetars with observed data

lead to characteristic gw spectrum signal higher of 2-3 orders of magnitude in region ν <100 Hz measurable with upcoming instruments

UHECR spectrum

Summary: recipe to identify UHECR sources

BBO

DECIGO

needed

By looking at **diffuse secondary emissions**:

UHE neutrino spectrum *Murase et al. 2009*

observation of specific spectrum of GW

= evidence of adequate magnetar parameters for acceleration of UHECR

distribution of initial voltages needed to reconcile spectrum generated by magnetars with observed data

lead to characteristic gw spectrum signal higher of 2-3 orders of magnitude in region *v*<100 Hz measurable with upcoming instruments

UHECR spectrum

Kumiko Kotera, University of Chicago