The inert doublet model of dark matter revisited

Based on Phys.Rev.D81:075024,2010, arXiv:1003.3125 (with Laura Lopez), and work in progress.

> Carlos E. Yaguna UAM and IFT 2010

In the inert doublet model (IDM) the SM is extended with a second higgs doublet

The idm contains 3 new scalars

$$H_2=\left(egin{array}{c} H^+\ (H^0+iA^0)/\sqrt{2} \end{array}
ight)$$

 H_2 is odd under a new Z_2 symmetry

This model features a rich phenomenology

Lightest component is stable No coupling to fermions

Barbieri, Bergstrom, Gustaffson, Ma, Tytgat, etc

The inert doublet model can account for the dark matter of the Universe

It includes a viable dm candidate

The lightest odd particle: H^0

H^0 has gauge and scalar interactions

The parameter space is rather simple

 $egin{aligned} V &= \mu_1^2 |H_1|^2 + \mu_2^2 |H_2^2| + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 \ &+ \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^\dagger H_2|^2 \ &+ rac{\lambda_5}{2} \left[(H_1^\dagger H_2)^2 + ext{h.c.}
ight] \end{aligned}$

 $m_{H^0}, m_{A^0}, m_{H^\pm}$ $\lambda_L \equiv rac{1}{2} (\lambda_3 + \lambda_4 + \lambda_5)$

Dark matter annihilations might be dominated by three-body final states such as WW^* or $t\bar{t}^*$

A new effect not included in most analysis

Yaguna (2010), Kamionkowski (1998) nor in DarkSUSY or micrOMEGAs

They affect Ω_{dm} and the dm detection prospects

modifying the viable parameter space

 $H^0 H^0$ may annihilate into WW^* in the IDM

for $m_{H^0} < M_W$

In the IDM the viable parameter space coincides with the region where $H^0H^0 \rightarrow WW^*$ is important

 $H^0H^0 \rightarrow W^+W^-$ has a purely gauge contribution

The viable parameter space is $m_{H^0} < M_W$

In that region, $b\overline{b}$ is the dominant 2-b final state

or $m_{H^0} > 500~{\rm GeV}$

Three different diagrams contribute to $H^0H^0 \rightarrow WW^* \rightarrow Wf\bar{f}'$ in the IDM

In the IDM, the three-body annihilation rate can be much larger than the two-body one

50

60

 $m_{H^0}^{}(GeV)$

70

80

 $\sigma(3\text{-body}) > \sigma(2\text{-body})$ ov a wide m_{H^0} range

The H^0 relic density is strongly reduced by annihilations into WW^*

A significant effect independently of m_h

 Ω could be more than 10 times smaller

This is a generic feature of the IDM

Due to 3-body final states, the viable parameter space of the IDM is substantially modified

The inert higgs direct detection cross section is much smaller than previously believed

The 3-body final state *WW*^{*} plays a major role in the dm phenomenology of the IDM

They modify the viable parameter space

They alter the dm detection prospects

They induce large corrections

