Gamma-rays from CR sources

Michael Kachelrieß

NTNU, Trondheim

Michael Kachelrieß (NTNU Trondheim)

Gamma-rays from CR sources

TeV Particle Astrophysics '10 2

2 / 34

- during propagation: "cosmogenic" photons
- in sources:

- 31

- during propagation: "cosmogenic" photons
- in sources:
 - galactic CR sources
 - GRB:
 - ★ large redshift
 - ★ time-delay UHECR \leftrightarrow photons makes direct correlation impossible
 - * for small EGMF: auto-correlation $n_{\rm GRB} \sim \tau \dot{n}_{\rm GRB} < n_{\rm AGN}$

- during propagation: "cosmogenic" photons
- in sources:
 - galactic CR sources
 - ► GRB:
 - ★ large redshift
 - ★ time-delay UHECR ↔ photons makes direct correlation impossible
 - * for small EGMF: auto-correlation $n_{\rm GRB} \sim \tau \dot{n}_{\rm GRB} < n_{\rm AGN}$
 - AGN:
 - ★ jets: small densities, B
 - ***** core: high B, large UV and IR densities, $\tau_{n\gamma} \sim 1$

- 31

HESS observations of M87:

Michael Kachelrieß (NTNU Trondheim)

HESS observations of M87:

HESS & Veritas observations of M87:

Introduction

- Gamma-rays produced in UHECR sources
 - How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources

Osmogenic fluxes:

- Cosmogenic neutrino limits from Fermi-LAT
- Cosmogenic photons: diffuse flux
- Secondary photons from CR point sources
- Lower limit on EGMF using gamma-rays

Summary

- Introduction
- Gamma-rays produced in UHECR sources
 - How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources
- Osmogenic fluxes:
 - Cosmogenic neutrino limits from Fermi-LAT
 - Cosmogenic photons: diffuse flux
 - Secondary photons from CR point sources
- Lower limit on EGMF using gamma-rays
- Summary

• • = • • = •

- Introduction
- Gamma-rays produced in UHECR sources
 - How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources
- Osmogenic fluxes:
 - Cosmogenic neutrino limits from Fermi-LAT
 - Cosmogenic photons: diffuse flux
 - Secondary photons from CR point sources
- Lower limit on EGMF using gamma-rays
- Summary

• • = • • = •

- Introduction
- Gamma-rays produced in UHECR sources
 - How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources
- Osmogenic fluxes:
 - Cosmogenic neutrino limits from Fermi-LAT
 - Cosmogenic photons: diffuse flux
 - Secondary photons from CR point sources
- Lower limit on EGMF using gamma-rays
- Summary

Multi-messenger astronomy with Cen A?

- + 2 events correlated with Cen A within 3.1°
- + more events close-by
- + general correlation with AGN
- confusion with LSS?
- no confirmation by HiRes
- tension to PAO chemical composition
- E_{max} for most AGN (incl. Cen A) high enough?

correlations with AGN:

- independent/additional evidence?
- Cen A closest AGN
- \Rightarrow good test case for multi-messenger astronomy: accompanying γ -ray and neutrino fluxes?

[Gorbunov et al. '07, Fargione '08, Rachen '08]

- 21

通 ト イヨ ト イヨト

Results for acceleration close to the core: $\alpha=1.2$

Results for acceleration close to the core: $\alpha=2$

7 / 34

HESS observations of Cen A

• no variability

Michael Kachelrieß (NTNU Trondheim)

< 回 > < 三 > < 三 >

HESS observations of Cen A

• no variability

• consistent with point source

HESS observations of Cen A

- no variability
- consistent with point source
- HE emission from central region $(1' \simeq 1.1 \text{ kpc})$

Comparison to recent HESS and FERMI observations

Comparison to recent HESS and FERMI observations

Regenerating TeV photons: a) (isotropic) source

• injection spectrum $F_{\gamma}(E) \propto 1/E^2$

Regenerating TeV photons: a) (isotropic) source

• : thin above 10^{16} eV, ultra-rel. regime

Regenerating TeV photons: b) on EBL

• photons above $10^{14} \mathrm{eV}$ cascade on EBL

Regenerating TeV photons: b) on EBL

• photons above 10^{14} eV cascade on EBL : fill up GeV–TeV range

Regenerating TeV photons: b) on EBL

• photons above 10^{14} eV cascade on EBL : fill up GeV–TeV range

	10	12	14	16	18	20	
log10(E/eV)					< □ > < 酉 > < Ξ > < Ξ > < Ξ > Ξ の < で		
Michael Kachelrieß	(NTNU Trond	neim)	Gamma-rays from CR	sources	TeV Particle	Astrophysics '10	11 / 34

Regenerating TeV photons: collinear regime

Regenerating TeV photons: decaying muons

Regenerating TeV photons: adding IR

adding IR from a compact source:

- Photon and neutrino production relatively tight connected:
 - protons:

$$p + \gamma_{3K} \to \begin{cases} p + \pi^0 \to p + 2\gamma \\ n + \pi^+ \to p + 2e^{\pm} + 4\nu \end{cases}$$

< 回 > < 三 > < 三 >

3

- Photon and neutrino production relatively tight connected:
 - protons:

$$p + \gamma_{3K} \to \begin{cases} p + \pi^0 \to p + 2\gamma \\ n + \pi^+ \to p + 2e^{\pm} + 4\nu \end{cases}$$

- ▶ nuclei: $A + \gamma_{3K} \rightarrow (A 1) + n \rightarrow (A 1) + p + e^- + \nu_e$
- connection to UHECRs looser

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Photon and neutrino production relatively tight connected:
 - protons:

$$p + \gamma_{3K} \to \begin{cases} p + \pi^0 \to p + 2\gamma \\ n + \pi^+ \to p + 2e^{\pm} + 4\nu \end{cases}$$

▶ nuclei: $A + \gamma_{3K} \rightarrow (A - 1) + n \rightarrow (A - 1) + p + e^{-} + \nu_e$

cascade limit:

[Berezinsky, Smirnov '75]

all energy in γ and e^\pm cascades below $\sim 100\,{\rm GeV}$

- Photon and neutrino production relatively tight connected:
 - protons:

$$p + \gamma_{3K} \to \begin{cases} p + \pi^0 \to p + 2\gamma \\ n + \pi^+ \to p + 2e^{\pm} + 4\nu \end{cases}$$

- ▶ nuclei: $A + \gamma_{3K} \rightarrow (A 1) + n \rightarrow (A 1) + p + e^{-} + \nu_e$
- cascade limit:

[Berezinsky, Smirnov '75]

all energy in γ and e^\pm cascades below $\sim 100\,{\rm GeV}$

$$J_{\gamma}(E) = \begin{cases} K(E/\varepsilon_X)^{-3/2} & \text{ at } E \leq \varepsilon_X \\ K(E/\varepsilon_X)^{-2} & \text{ at } \varepsilon_X \leq E \leq \\ 0 & \text{ at } E > \varepsilon_a \end{cases}$$

Michael Kachelrieß (NTNU Trondheim)

イロト 不得 とくまとう ほう

- Photon and neutrino production relatively tight connected:
 - protons:

$$p + \gamma_{3K} \to \begin{cases} p + \pi^0 \to p + 2\gamma \\ n + \pi^+ \to p + 2e^{\pm} + 4\nu \end{cases}$$

- ▶ nuclei: $A + \gamma_{3K} \rightarrow (A 1) + n \rightarrow (A 1) + p + e^- + \nu_e$
- cascade limit:

[Berezinsky, Smirnov '75]

all energy in γ and e^\pm cascades below $\sim 100\,{\rm GeV}$

• Fermi-LAT measurement of EGRB:

$$\begin{split} \omega_{\rm cas} &> \frac{4\pi}{c} \int_{E_0}^{\infty} dE \; E I_{\nu}(E) \geq \frac{4\pi}{c} E_0 I_{\nu}(>E_0) \\ &\lesssim \quad 6 \cdot 10^{-7} \; {\rm eV/cm}^3 \end{split}$$

Comparison of Monte Carlo and analytical estimate

Comparison of Monte Carlo and analytical estimate

Michael Kachelrieß (NTNU Trondheim)
Fermi-LAT vs. UHECR data:

[Berezinsky et al. '10]

Fermi-LAT vs. UHECR data:

[Berezinsky et al. '10]

integrating EJ(E) gives bound $\omega_{\rm cas} \leq 6 \cdot 10^{-7} \, {\rm eV/cm}^3$

3

Cascade limit for cosmogenic neutrinos

Cascade limit for cosmogenic neutrinos

[Ahlers et al. '10]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

18 / 34

Cascade limit for cosmogenic neutrinos

- end of exp. sensitivity for $1/E^2$ flux: 10^{17} vs. 10^{19} eV
- overall sensitivity of IceCube

三 のへへ

Neutrino limits from the EGRB

Cascade limit for cosmogenic neutrinos

Main difference: expected IceCube sensitivity

- end of exp. sensitivity for $1/E^2$ flux: 10^{17} vs. 10^{19} eV
- overall sensitivity of IceCube

Michael Kachelrieß (NTNU Trondheim)

Cosmogenic photons

[Hooper, Taylor, Sarkar '10]

Diffuse photons

Cosmogenic photons

[Hooper, Taylor, Sarkar '10]

- A > 1: photons suppressed by factor 10 compared to protons
- even proton: requires sensitivity improved by ~ 100
- large $E_{\rm max}$ and small α helps...

Cosmogenic photons

[Hooper, Taylor, Sarkar '10]

Cosmogenic photons: dependence on α

• for $d < \text{few} \times 10 \text{ Mpc:}$ UHE photons survive

• for $d < \text{few} \times 10 \text{ Mpc:}$ UHE photons survive

[Taylor et al. '09]

 non-observation is no constraint, but observation identifies close source

- for $d < \text{few} \times 10 \text{ Mpc}$: UHE photons survive
- larger distance: UHE photons cascade down in TeV range [Essey et al. '10]
 - universal shape, depending only on EBL and z

[Taylor et al. '09]

- for $d < {\rm few} \times 10 \,{\rm Mpc:}\,$ UHE photons survive
- larger distance: UHE photons cascade down in TeV range [Essey et al. '10]
 - universal shape, depending only on EBL and z

- Origin of seed for EGMF is mysterious
- Seed required as input for EGMF simulations

A B F A B F

- Origin of seed for EGMF is mysterious
- Seed required as input for EGMF simulations

- Origin of seed for EGMF is mysterious
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$

< 同 > < 三 > < 三 > <

- Origin of seed for EGMF is mysterious
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs

- Origin of seed for EGMF is mysterious
- Seed required as input for EGMF simulations
- Observations only in clusters,
 - synchrotron halo: $\Rightarrow B \sim (0.1 1) \, \mu \text{G}$
 - Faraday rotation: $\Rightarrow B \sim (1 10) \, \mu \text{G}$
- Aharonian, Coppi, Völk '94: Pair halos around AGNs
- Plaga '95: EGMFs deflect and delay cascade electrons
 - \Rightarrow search for delayed "echoes" of multi-TeV AGN flares/GRBs

< 同 > < 三 > < 三 > <

Observer misaligned with jet:

[Neronov et al. '10]

• probability for misalignement $p \propto \vartheta_{obs} \Rightarrow$ most blazars viewed with $\vartheta_{\rm obs} \sim \vartheta_{\rm iet}$

3

Observer misaligned with jet:

[Neronov et al. '10]

- probability for misalignement $p\propto \vartheta_{\rm obs}\Rightarrow$ most blazars viewed with $\vartheta_{\rm obs}\sim \vartheta_{\rm jet}$
- \Rightarrow halos are not symmetric

Observer misaligned with jet:

[Neronov et al. '10]

- probability for misalignement $p\propto \vartheta_{\rm obs}\Rightarrow$ most blazars viewed with $\vartheta_{\rm obs}\sim \vartheta_{\rm jet}$
- \Rightarrow halos are not symmetric
- \Rightarrow time-delay is function of ϑ ,

$$T_{\rm delay}(\vartheta) \sim 3 \times 10^6 {\rm yr} \left[\frac{(\vartheta_{\rm obs} + \Theta_{\rm jet})}{5^\circ} \right] \left[\frac{\vartheta}{5^\circ} \right]$$

Asymmetric halos around TeV blazars ("GeV jets"):

Michael Kachelrieß (NTNU Trondheim)

"GeV jets": B dependence

Michael Kachelrieß (NTNU Trondheim)

TeV Particle Astrophysics '10 25 / 34

"GeV jets": time dependence of flares

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

• choose blazar: large z, stationary, low GeV, high multi-TeV emission

- TeV photons cascade down:
 - small EGMF: fill up GeV range
 - "large" EGMF: deflected outside, isotropized

[F. Tavecchio et al. '10, A. Neronov, I. Vovk '10]

[F. Tavecchio et al. '10, A. Neronov, I. Vovk '10]

• $B\gtrsim 10^{-15}\,{\rm G}$

 $\bullet\,$ some dependence on $\vartheta_{\rm jet}$

[F. Tavecchio et al. '10, A. Neronov, I. Vovk '10]

 $\bullet ~B\gtrsim 10^{-15}\,{\rm G}$

- $\bullet\,$ some dependence on $\vartheta_{\rm jet}$
- ${\ensuremath{\, \circ }}$ no simulation of elmag. cascade with B
- what happens for structured *B*?

Michael Kachelrieß (NTNU Trondheim)

• model filaments by a top-hat:

Michael Kachelrieß (NTNU Trondheim)

[MK, Ostapchenko, Tomàs '10]

Michael Kachelrieß (NTNU Trondheim)

- mainly 3-step cascade: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$
- photon mean free path $D_{\gamma}(E) \sim 1000\text{--}50\,\mathrm{Mpc}$
- ${\ensuremath{\, \circ }}$ electron mean free path $D_e(E)\sim {\rm few}~{\rm kpc}$

Michael Kachelrieß (NTNU Trondheim)

Gamma-rays from CR sources

 $\log_{10}(E/eV)$

3

- mainly 3-step cascade: $\gamma \rightarrow e^{\pm} \rightarrow \gamma$
- photon mean free path $D_{\gamma}(E) \sim 1000\text{--}50\,\mathrm{Mpc}$
- ${\ensuremath{\, \circ }}$ electron mean free path $D_e(E)\sim {\rm few}~{\rm kpc}$
- $\Rightarrow\,$ electrons are created "everywhere" and feel B only close to interaction point

log₁₀(E/eV)

Michael Kachelrieß (NTNU Trondheim)

Gamma-rays from CR sources

3

EGMF in voids already observed?

[Ando, Kusenko '10]

• stack 170 brightest AGN

- 20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Gamma-rays and the EGMF

EGMF in voids already observed?

- stack 170 brightest AGN
- search for excess over PSF

Michael Kachelrieß (NTNU Trondheim)

EGMF in voids already observed?

- stack 170 brightest AGN
- search for excess over PSF

EGMF in voids already observed?

- stack 170 brightest AGN
- search for excess over PSF

 $B \sim 10^{-15} \text{ G} (\lambda_B/1 \text{ kpc})^{-1/2}$ and $\lambda_B < 10 - 100 \text{ kpc}$

A 19 N A 19 N

EGMF in voids already observed?

- stack 170 brightest AGN
- search for excess over PSF

• lower limit $B \gtrsim 5 \times 10^{-15} \,\mathrm{G}$ requires $\lambda_B \lesssim 0.1 \,\mathrm{kpc}$

EGMF already observed? Probably not...

• point source Crab shows the same "halo" as stacked AGN:

EGMF already observed? Probably not...

• point source Crab shows the same "halo" as stacked AGN:

• tail of PSF wrong (?), difference between "front" and "back" photons

• multi-TeV photons from AGN cores require

- photons in KN regime
- HE muons
- \Rightarrow hadronic models

- multi-TeV photons from AGN cores require
 - photons in KN regime
 - HE muons
- \Rightarrow hadronic models
 - secondary photons:
 - chemical composition
 - TeV sources ??

- multi-TeV photons from AGN cores require
 - photons in KN regime
 - HE muons
- \Rightarrow hadronic models
 - secondary photons:
 - chemical composition
 - ► TeV sources ??
 - cascade limit from Fermi data reduced by factor ~ 7

- multi-TeV photons from AGN cores require
 - photons in KN regime
 - HE muons
- \Rightarrow hadronic models
 - secondary photons:
 - chemical composition
 - ► TeV sources ??
 - cascade limit from Fermi data reduced by factor ~ 7
 - lower limit on EGMF in voids $B \gtrsim 10^{-15} \, {\rm G}$