Gamma-rays from heavy nuclei accelerated in SNRs

Damiano Caprioli

In collaboration with:

Pasquale Blasi, Elena Amato

Accelerating particles

- Fermi mechanism (1954): particle scattering against magnetic irregularities leads (on average) to an energy gain
- At SN shocks: Diffusive Shock Acceleration (Krimskii 1977, Bell 1978, Blandford & Ostriker 1978)

 Balance between energy gain and escape probability provides a power law spectrum whose index depends only on the compression ratio

$$N(E) \propto \left(\frac{\mathrm{E}}{\mathrm{E}_0}\right)^2$$

$$\gamma = \frac{R+2}{R-1}$$

 $R = 4 \Longrightarrow N(E) \propto E^{-2}$

• For strong shocks (M>>1):

CR-modified shocks

- 0.01 CR pressure around the shock: the 0 upstream fluid is slowed down and $u_0 = 5 \times 10^8 \text{ cm/s}$ 0.001 $\xi = 3.5$ becomes more compressible $p_{max}/mc = 10^5$ $(mc)^3$ 0.0001 Velocity Profile f f 10-5 r = 4р Ш<mark>с</mark> 10-6 Subshock Precursor 10-7 ביות המוכבי המוכבי המוכבי המוכבי 10^{-8} 10-4 10² 10^{-2} 10^{4} p mc
- Acceleration may be very efficient ($R_{tot} \sim 10$)
- The downstream is heated less efficiently
- The spectra of accelerated particles become rather concave

X-ray observations of young SNRs

The escape flux

- Ejecta dominated stage: P_{max} and magnetic turbulence increase with time 0
- Sedov-Taylor stage: V_{sh} and δB decrease, and the SNR confining power too 0
 - Particles with momentum close to P_{max} escape the system from upstream

0

Semi-analytical NLDSA

 Solution the diffusion-convection equation (+ hydrodynamics) in a recursive way (Amato, Blasi 2005; 2006; DC, Amato, Blasi 2010a)

• Physical ingredients:

- > Analytical SNR evolution (Truelove, McKee 1999)
- > Injection of particles from the thermal bath (Blasi, Gabici, Vannoni 2005)
- **Escape of particles during the Sedov phase** (DC, Amato, Blasi 2010a)
- Back-reaction of the CRs
- Amplification of the magnetic field via streaming instability
- Back-reaction of the magnetic turbulence (DC et al. 2008; 2009)
- Presence of nuclei heavier than Hydrogen (DC, Blasi, Amato, astroph:/1007.1925)

• The method is:

- computationally very fast
- flexible in implementing new pieces of Physics
- in perfect agreement with Monte-Carlo and fully numerical solutions (DC, Kang, Jones, Vladimirov 2010)

The velocity of the scattering centers

- CRs do not scatter on the fluid, but on magnetic irregularities!
 - The compression ratio
 CRs actually feel is

$$R_{CR} = \frac{(u + v_w)_{ups}}{(u + v_w)_{downs}} \neq 4$$

What is v_w? It depends on the nature of the turbulence!

• Assuming an effective Alfvén velocity in the amplified B spectra are steeper! (see Bell 1978)

$$v_w = -v_A = -\frac{\delta B}{\sqrt{4\pi\rho}} \approx -(0.01 - 0.1)u$$

Results

- We take a benchmark SNR accounting for the CR spectrum measured at Earth
- At the beginning of the Sedov stage:

- Instantaneous concave spectrum
- Heavy nuclei (HN) are not negligible in the shock dynamics

Hadronic Gamma rays

• With the same HN abundances adopted above:

- HN contribute as much as protons (maybe more in HN-rich environments!)
- The cut-off shape is affected by nuclei
- The circumstellar density may be significantly lower than standard estimates
 - Effects on the SNR evolution and on the thermal emissivity

Observational facts

• SNRs with SHELL MORPHOLOGY:

SNR	Detected by	Slope	Age (yr)	Distance (kpc)
Cas A	MAGIC/VERITAS	2.3 ± 0.2	330	3.4
RX J1713.4-3047	HESS+Fermi	2.04 ± 0.04	1600	1
Vela Jr.	HESS	2.24 ± 0.04	600-4000	0.2-0.8
RCW 86	HESS	2.54 ± 0.12	1800	2.5
SN 1006	HESS	2.34 ± 0.22 SW 2.54 ± 0.15 NE	1004	2.2

Escape flux and MCs

- If a source is close to a Molecular Cloud, the number of targets for p-p collisions drastically increases:
 - **The cloud may look like a γ-ray source** (Issa, Wolfendale 1981; Aharonian 1991)
 - Many SNRs/MCs detected both in TeV (IC 443, W51, W28...) with HESS, VERITAS and MAGIC and in GeV with Fermi, with slope in the range 2.1-2.9

	Spatial			Spectral Fit		
Name	R.A. (deg)	Decl. (deg)	<i>r</i> 95 (deg)	F(0.1-100 GeV) (10 ⁻⁷ photons cm ⁻² s ⁻¹)	Г	
G349.7+0.2	259.47	-37.50	0.03	0.58 ± 0.11	2.10 ± 0.11	
CTB 37A	258.65	38.52	0.04	1.36 ± 0.15	2.19 ± 0.07	
3C 391	282.26	-0.92	0.03	1.58 ± 0.26	2.33 ± 0.11	
G8.7–0.1	271.33	-21.64	0.03	3.88 ± 0.42	2.40 ± 0.07	

Castro, Slane 2010

• The spectrum may be related to the CR escape flux (e.g. Gabici, Aharonian, Blasi 2007; Gabici, Aharonian, Casanova 2009; Lee, Kamae, Ellison 2009)

 Unidentified TeV sources (20 over 80) may be associated with MCs illuminated by SNRs

SNRs and PeVatrons

- Why don't we see sources with $E_{max} > 10^6 \text{ GeV}$ (i.e. $E_{max}^{\gamma} > 300 \text{ TeV}$)?
 - Best candidates are 500-1000 yr old SNRs (around T_{Sedov})
 - Assuming a lifetime of 70 kyr, less than 1% of the SNRs should be a PeVatron!

Conclusions

- Nuclei heavier than Hydrogen may contribute is a substantial way to the gamma emission from SNRs
 - Contribution to shock dynamics
 - Estimate of the circumstellar density

• Explaining the steep spectra so-far observed is a new challenge for NLDSA

- Need for a better comprehension of the magnetic turbulence
- Account consistently for the Galactic CR spectrum
- Prediction of the physics of SNR/MCs interactions

• The lack of detection of PeVatrons is not at odd with theoretical expectations