

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J1303-631

Matthew Dalton
Humboldt University at Berlin
For the <u>H.E.S.S. Collaboration</u>

Overview

- The H.E.S.S. Telescopes
- Unidentified Gamma-ray sources as PWNe
- HESS J1303-631

H.E.S.S.

High Energy Stereoscopic System

Gamma-rays produce air showers which are imaged by Cherenkov telescopes

Imaged showers are reconstructed to produce sky maps and spectra of gamma-ray sources

H.E.S.S.

- 4 Telescopes in Namibia
- 13m diameter each
- Gamma-rays from ~100 GeV to ~100 TeV
- Angular Resolution: < 0.08 degrees per event</p>
- 5 degree field of view

Sources Detected with H.E.S.S.

Most of the sources we see are:

- Supernova Remnants
- Active Galactic Nuclei
- Pulsar Binary Systems
- 🥙 Pulsar Wind Nebulae
- 🥮 ... or unidentified

PWN: HESS J1825-137

SNR RX J1713.7-3946

H.E.S.S. has also detected ~24 unidentified sources.

Unidentified Sources

```
HESS J0632+057
HESS J1023-575
                     WR 20a; Westerlund 2; RCW 49
HESS J1303-631
HESS J1427-608
HESS J1614-518
HESS J1616-508
                     PSR J1617-5055?
HESS J1626-490
HESS J1632-478
                     IGR J16320-4751?
HESS J1634-472
                     IGR [16358-4726 ?; G337.2+0.1 ?
HESS J1640-465
                     G338.3-0.0 ?; 3EG J1639-4702 ?
HESS J1702-420
HESS J1708-410
HESS J1713-381
                     CTB 37B (G348.7+0.3)?
                     CTB 37A
HESS J1714-385
HESS J1718-385
                     PSR J1718-3825?
HESS J1745-290
                     Sgr A* / Chan PWN?
HESS J1745-303
                     3EG J1744-3011?
HESS J1804-216
                     G8.7-0.1 / W30 ?; PSR J1803-2137 ?
HESS J1809-193
                     PSR [1809-1917?
HESS J1813-178
                     G12.8-0.02; AX J1813-178
HESS J1834-087
                     G23.3-0.3 / W41?
```

What could it be a PWN?

Type 1: Multiple and complex:

HESS J1745-303 appears to be numerous emission regions with several possible emission mechanisms.

Possible Associations: EGRET 3EG J1744-3022 SNR G359.1-0.5 PSR B1742-30

Type 2: "Dark" Sources

Gamma-ray sources without obvious, extended counterparts at other wavelengths. Typically extended galactic sources.

First example discovered by HEGRA: TeV J2032+4130

Many more discovered by H.E.S.S.

Could be a new kind of source, a "dark" accelerator?

TeV J2032+4130 Update:

Deep observations have revealed faint but extended radio and X-ray sources which may be associated to the very high energy emission making this a "Not-so-dark" source, also the discovery by Fermi of a gamma-ray only pulsar may indicate a PWN scenario.

1.4 GHz Radio WSRT Map

Could they be PWN?

Many of the unidentified H.E.S.S. Sources have a powerful pulsar located near the edge of the emission region. With deep enough observations, it's likely that many of these will be added to the category of "not-so-dark" pulsar wind nebulae.

Offset Pulsar Wind Nebulae

Virtually very extended PWN detected by H.E.S.S. is an "offset PWN", i.e. the pulsar lies at the edge of the emission region.

Two possibilities:

- * "Crushed" PWN: inhomogeneity in the interstellar medium density prefers expansion in one direction.
- ★ Supersonic Pulsar: pulsar space velocity is greater than electron diffusion rate.

Pulsar Correlation Study

Correlate HESS sources with PSRs from Parkes Survey

At high Edot/d^2 very low probability of chance coincidence can start to predict which PSRs will make gamma PWNe

Inverse Compton Gamma-Rays

High Energy Electrons scatter CMB photons through the inverse Compton effect to produce Gamma-rays

The same electrons produce X-rays and Radio via synchrotron scatter in a local magnetic field

Unidentified Gamma-ray Sources as PWNe

O.C. De Jager et. al. (2009) Found that as a PWN expands, the average magnetic field drops as t^-1.3. Then, the radio/x-ray synchrotron peak will drop but inverse Compton gamma-rays remain nearly constant for many kiloyears.

Gamma/X Ratio

F.Mattana, et. al. Compared ratios of the Gamma-ray/X-ray ratio for PWN associations as a function of time and found a strong correlation, mainly due to falling X-ray components

Known PWN
associations:
closed circles

Proposed associations: open circles

Unidentified HESS J1303-631

Serendipitously discovered by H.E.S.S. In 2004 during observations of the binary system PSR B1259-63

No extended radio sources found in emission region and follow-up observations in X-rays by Chandra yielded no plausible counterpart Most likely counterpart: PSR J1301-6305

Unidentified HESS J1303-631

PSR J1301-6305:

High spin-down power: 1.7e36 erg/sec

Young pulsar: 11,000 years

Distance = 6.6 kpc

Gamma-rays represent only a few percent of

current spin-down power: typical for PWNe

Unidentified HESS J1303-631

Morphology detected at 7 sigma significance Between E<10 TeV and E>10 TeV

-0.05

-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5 Slice Axis [°]

0.2

-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5 Slice Axis [°] Intrinsic gaussian width falls from 0.2 to 0.1 deg Center of emission moves ~0.1 degrees Still significantly extended above 10 TeV

HESS J1303-631: Gamma-rays

The highest energies near the pulsar, lower energies farther from pulsar suggests a pulsar association.

HESS J1303-631: X-rays

XMM Newton observation of the source region reveals a slightly extended X-ray source associated to the pulsar

Count map
ObsID 0302340101
~30 ksec

ObsID 0303440101
Is unfortunately not suitable since extended region lies on the edges of the chips in all three cameras.

HESS J1303-631: X-rays

Slice on XMM X-ray source associated to the pulsar

Width ~90 arc sec 8 sigma

Absorbed Powerlaw fit:
PhoIndex 2.75
Flux(2-10kev) = 1.2e-13 erg/cm2/s

HESS J1303-631: Radio

Radio observations with PMN at 4.8 GHz Some evidence for a radio counterpart at the detection limit with flux ~29 mJ, so not significant.

Green contours: H.E.S.S. gamma-

Black contours: XMM X-ray

White contours:

HESS J1303-631: SED

The spectral energy distribution of HESS J1303-631 in an electron scenario.

A "one zone" model where the same electrons produce synchrotron radio/Xrays and inverse Compton gamma-rays -Iurii Sushch

Using spectra from H.E.S.S. And XMM as well as the flux upper limit from PMN, the data is consistent with a PWN scenario with average B field of 0.4 \mu G Electron index 2.2 Emax 113 TeV

And the other Unidentifieds?

Many of the unidentified H.E.S.S. Sources have a powerful pulsar located near the edge of the emission region. With deep enough observations, it's likely that many of these will be added to the category of "not-so-dark" pulsar wind nebulae.

HESS J1640-465

No pulsar found near bye, but hard point source in X-rays may represent neutron star responsible for Gamma-ray emission.

XMM X-ray: E > 2 keV

White: MOST Radio shell of G338.3-0.0

Cross shows HESS best fit position

XMMU J16445.4-463131
Index 1.74 +/- 0.1
F(2-10keV) = 6.6 e-13
erg/cm2/s
Significance = 11

HESS J1507-622

8% of Crab flux
Photon Index 2.2
3.5 deg from Galactic Plane
Surprisingly, no plausible counterparts or
pulsars although far from GP where
absorption is low!

Gamma-ray excess from H.E.S.S.

Conclusions

- With energy dependent morphology, X-ray counterpart and potential radio counterpart, the evidence seems strong enough now to identify HESS J1303-631 as a "not-so-dark" PWN
- Many other unidentified sources appear to be "not-so-dark" PWNe
- It is possible that most/all unidentified sources will eventually be identified as "not-so-dark" PWNe
- With continued Multi-Wavelength observations we can better understand this new class of PWNe