one coin, two sides: the microwave and gamma-ray haze

Greg Dobler (KITP/UCSB)

one coin, trvo sides: the microwave and gamma-ray haze

Greg Dobler (KITP/UCSB)

the Fermi haze from DM annihilation: halo shapes and anisotropic diffusion

Greg Dobler (KITP/UCSB)

the Fermi haze from DM annihilation: halo shapes and anisotropic diffusion

Greg Dobler (KITP/UCSB) Ilias Cholis (NYU) Neal Weiner (NYU)

the Fermi haze from DM annihilation: halo shapes and anisotropic diffusion

Greg Dobler (KITP/UCSB)

Ilias Cholis (NYU)

Neal Weiner (NYU)

Doug Finkbeiner (Harvard/CfA)

Tracy Slatyer (Harvard/CfA)

Tongyan Lin (Harvard/CfA)

the Fermi haze

Fermi 2-5 GeV

the Fermi haze

Fermi 2-5 GeV

the Fermi haze

Fermi 2-5 GeV

two *robust* features:

. *elongated* in *b* with an axis ratio ~1.7 . spectrum is *harder* than elsewhere

the Fermi haze (spectrum)

Fermi 2-5 GeV

spectrum is consistent with IC emission from a hard population of electrons

. amplitude/shape can be fit model-independently

. consistent with leptonic DM annihilations

the Fermi haze (spectrum)

Lin, Finkbeiner, & Dobler (2010)

the Fermi haze (morphology)

Fermi 2-5 GeV

morphology... <u>much</u> more difficult:
 . north/south "edge"?
 . what happens towards the center?

haze residuals

haze residuals

haze residuals

-90

180

90

0

-90

-90

-180

90

0

-90

-0.18

180

-180

-0.18

very little "pinching", but... slightly undersubtracted disk, noisier

significant "pinching", but... over-subtracted disk, less noisy

let's run with this one for now...

does an IC signal from DM annihilation electrons produce this shape???

not for "typical" diffusion parameters, but...

not for "typical" diffusion parameters, but...

not for "typical" diffusion parameters, but...

not for "typical" diffusion parameters, but... for anisotropic diffusion **yes**!!!

anisotropic diffusion via ordered fields

electrons travel along **ordered** magnetic fields, we motivate anisotropic diffusion by including both turbulent and ordered components:

diffusion coefficients along r and z are related to the ratio of ordered vs turbulent field

three IC components

three IC components

three IC components

template fitting *may* "soak up" star and IR components leaving a more hourglass-like shape...

Cholis, Dobler, & Weiner, in prep

Cholis, Dobler, & Weiner, in prep

Cholis, Dobler, & Weiner, in prep

Cholis, Dobler, & Weiner, in prep

Fermi haze spectrum

- anisotropic diffusion
- prolate Einasto, q=2/3
- *M*χ=1.2 TeV, XDM, χχ->*e*⁺*e*⁻
- Sommerfeld boost = 70

Cholis, Dobler, & Weiner, in prep

conclusions

- the *Fermi* haze has two unique features:
. morphology (elongated in *b* with respect to *l*)
. spectrum (harder than elsewhere in the Galaxy)

- particle DM models can reproduce the spectrum of IC emission and amplitude with cross-section enhancement

- morphology is more subtle but doable

- . a spherical DM halo with isotropic diffusion provides a poor fit
- . a prolate DM halo with anisotropic diffusion provides a reasonable fit

- outstanding issues:

- . upper/lower "edge" (the *most* tricky part!!!)
- . morphology (bubbles? oval? templates to use?)
- . synchrotron polarization