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The Isotropic Gamma Ray
Background

Credit: NASA/DOE/International LAT Team

* Large scale isotropic gamma ray flux after point

sources have been eliminated



The Fermi Gamma Ray
Space Telescope

Surveys the whole sky

once every 3 hours

100 Mev - 300 GeV

Wide field of view:
~2.4 sr

More precise
measurements of the
gamma ray background

than any previous mission
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Credit: http://fermi. gsfc.nasa.gov/



The Fermi Gamma Ray
Background

* Sources composing
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Decomposition

Mathematical techniques to break down the

background

Into 1ts component sources

Analytic and unique

Model-inde;

Qendent

Potentially applicable for a wide variety of sources

The Key: Anisotropy as a function of energy



Quantifying the Anisotropy

* We use the angular power spectrum of intensity

tluctuations in units of mean intensity (dimensionless)

SI(W) = amYem(¥)
£,m

Co=(laem|?)

* Note: fluctuation power spectra are independent of

intensity normalization

— Hence, C, (E) is constant for a single source whose spatial

distribution is energy independent



The Anisotropy Energy Spectrum

) Anisotropy Energy Spectrum: the angular power
spectrum of the total emission at a fixed angular

scale (multipole /) as a function of energy

* Total spectrum is computed by

. I,(E) ) (L(E) ) .(L(E) ) (L(E))
(t YE C Cy +2 C
( ) (It)t(E) I+ It)t(E) + It)t(E) Itct(E) !

— Note the Weighting of each C /by the fractional intensity

squared => total spectrum is energy dependent
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Goals and Assumptions

We will assume only two sources are contributing in

the energy range considered

— Three or more sources can be handled with techniques

to be discussed

For each source, C, independent of energy

—i.e. spatial distribution is energy independent
All correlation terms are zero

The examples that follow are intended to be

illustrative of the mathematical techniques, not

necessarily realistic scenarios



The Equations

* Total Intensity




The Equations

* Total Intensity




In Search of C s

* Equations reduce to finding the C,s of the two

source classes
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Plateau

* Transition from one dominant source to another

* Canread oft the C s - then done!
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Plateau

* Transition from one dominant source to another

* Canread oft the C s - then done!
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Plateau

* Transition from one dominant source to another

* Canread oft the C s - then done!

Intensity Energy Spectrum Anisotropy Energy Spectrum
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Minimum Example

Intensity Energy Spectrum Anisotropy Energy Spectrum
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Minimum

* Two conditions for minima:




Minimum
* The first condition yields a relation between the two

C, s

* If we know one source dominates at some energy,

we can read off its C, and solve for the other

* The two types of minima can be distinguished in

several ways

— Knowledge about the sources expected to be

contributing

- Computing an anisotropy cenergy spectrurn at a second /
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Minimum Example

Intensity Energy Spectrum Anisotropy Energy Spectrum
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Low Anisotropy Subdominant

e Assume Source 1 is dominant over Source 2 in both

intensity and anisotropy

* Then we have:




Low Anisotropy Subdominant

* Using this relation, we immediately uncover the

intensity spectra




Example
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Intensity Energy Spectrum Anisotropy Energy Spectrum

fl‘.rl]

S

2 I
at £ =100

‘r—'
=
o]

>
]

.y

-

—_

m

—

LTy

>

E

10 1000 : ' 10 1000

Energy [GeV] Energy |GeV]




Example

Intensity Energy Spectrum Anisotropy Energy Spectrum
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High Anisotropy Subdominant

* Now the opposite case: the subdominant source is

much more anisotropic than the dominant source
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Multiple 7 s

* It one or more sources has a C, that varies with /,
then measuring two anisotropy energy spectra can

yield a decomposition

* Since the LHS is / - independent, the RHS must be

the same measured at any /

df,(E) dC 1“”'t( -"";')/ E

where f indicates fractional intensity



Multiple 7 s

* We then equate this expression at two values of /

* After a little algebra,

tot d tot __ Ytot _d_Ytot
. 01 dEO
I, =

s dE ¥4
tot d

1 tot 1 i tot
01 dE 0o lo dE ~ ¥4

where the / subscripts distinguish the two / values

used
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Three (or more) Component Case

* Both the total intensity equation and total

anisotropy equations are additive

* In a multi-component background, if one source is
known completely, i.e. I(E) and C,, it can be

subtracted out

* If the background can be reduced back to two
components in this way, all of the methodology can

be applied
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Summary

* Decomposition techniques cover a wide range of
scenarios
— Transition between two sources (plateau)
— Sources of comparable anisotropy (minimum)

— Subdominant sources with very low or very high

anisotropy

— Sources with /-dependent C, s
. Analytic and unique

* Model independent



Notes on Uniqueness

* The choice of signs in the general equation for the
intensity spectra is determined by sign of the

quantity

The sign of this quantity changes at each minimum,
necessitating a sign ﬂip in the intensity spectra
equations. If there is some energy where only one of
the sources is expected to contribute, the proper

signs can then be deduced



Notes on Uniqueness

* To distinguish between the two types of minima,
one can examine the anisotropy energy spectrum at
two different / values. If the location of the
minimum changes between the two spectra, then it
is a correlation minimum that can be used for
decomposition. Otherwise it is an extremum of the

fractional intensity.



