Heavy jet for radiogalaxies M. C. Medina, M. Reynoso & G. E. Romero *TeVPa 2010*

Outline

Cen A: a radiogalaxy as UHECR and TeV γ-Rays source

- Basic scenario
- Model Assumptions
- Cen A case
- M87 case
- Final comments

Centaurus A

- FR I radiogalaxy non blazar
 - Distance ~ 3.4 Mpc
 - Central Black Hole Mass 10⁸ M_☉
- TeV γ-Rays source
 - HESS detection (100h)
 - Emission up to 5 TeV
 - relatively hard spectrum (photon index 2.7)
 - non-variability
- UHE Cosmic Rays source?
 - Apparent clustering of arrival directions
 - up to 4 of 27 Auger events

Basic Scenario

Particle acceleration by shocks in the jet
Jet kinetic power L_k = q_j L_{Edd} ; q_j « 1
Jet content : thermal plasma middly relativistic.

Few % of jet power carried by relativistic particles:

 $L_e + L_p = q_{rel}L_k \; ; \; L_p = aL_e$

Plasma at equipartion with a tangled magnetic field at the jet base ($z_0 = 50 R_g$)

Basic Scenario

• $B(z) = B_0 \left(\frac{z_0}{z}\right)^m$; $m \in [1, 2]$ • Primary protons & electrons injected at $Z_{acc} (\rho_m \ll \rho_k)$

Injection:

 $Q_i(E,z) = K_i \left(\frac{z_{\rm acc}}{z}\right)^2 E^{-s} \exp\left[-\left(\frac{E}{E_i^{(\rm max)}}\right)^2\right]$

Photon absorption :

- $\gamma\gamma$ annihilation within the jet
- External photons + dust column (N_H)

Primary relativistic particles

Acceleration rate $t_{acc}^{-1}(E,z) = \eta \frac{ceB(z)}{E}$ Energy loss rates $t_{(loss,e)}^{-1} = t_{syn}^{-1} + t_{ad}^{-1} + t_{IC}^{-1}$ $t_{(loss,p)}^{-1} = t_{syn}^{-1} + t_{ad}^{-1} + t_{p\gamma}^{-1} + t_{pp}^{-1}$

21/07/2010

Resolution of 1D Steady state equation

 $v\frac{\partial N(E,z)}{\partial z} + \frac{\partial \left[b(E,z)N(E,z)\right]}{\partial E} = Q(E,z) \qquad b(E,z) = \frac{dE}{dt}$

Method of characteristics $\frac{dz}{v_b} = \frac{dE}{b(E,z)} = \frac{dN(E,z)}{Q(E,z) - \frac{\delta b(E,z)}{\delta E}N(E,z)}$

Secondary particles in the jet

Pion production

 $\begin{array}{ll} p+\gamma \longrightarrow p+n\pi^{0}+m(\pi^{+}+\pi^{-}) & n,m=0,1,2...\\ \mbox{Atoyan \& Delmer 2003} & p+\gamma \longrightarrow \Delta^{+} \longrightarrow p+\pi^{0}\\ & p+\gamma \longrightarrow \Delta^{+} \longrightarrow n+\pi^{0} \end{array}$

Kelner et al. 2006

 $\begin{array}{l} p+p \longrightarrow p+p+a\pi^{0}+b(\pi^{+}+\pi^{-})\\ p+p \longrightarrow p+n+\pi^{+}+a\pi^{0}+b(\pi^{+}+\pi^{-})\\ p+p \longrightarrow n+n+2\pi^{+}+a\pi^{0}+b(\pi^{+}+\pi^{-}) \end{array}$

• Pion decay $\pi^{\pm} \longrightarrow 2\mu^{\pm} + \bar{\nu}_{\mu}(\nu_{\mu})$ Lipari et al. 2007

$$\frac{\partial N(E,z)}{\partial z} + \frac{\partial \left[b(E,z)N(E,z)\right]}{\partial E} + \frac{N(E,z)}{T_{dec}(E)} = Q(E,z)$$

Secondary particles in the jet

9

Cen A case

Parameter	Value
Mass BH М вн	10 ⁸ M₀
Lorentz factor F	3
Jet kinetic power L _k	1,25 x 10 ⁴⁵ erg s ⁻¹
fraction of power in relativistic particles \mathbf{q}_{rel}	0,1
proton to electron ratio a	0,1
jet launching position z_0	50 R _g = 7,38 x 10 ¹⁴ cm
particle acceleration position z_{acc}	250 R _g = 3,69 x 10 ¹⁵ cm
jet opening angle $\boldsymbol{\xi}$	5°
viewing angle θ	25°
acceleration efficiency η	0,01
spectral index injection s	1,8
dust column density N H	1x10 ²³ cm ⁻²

Cen A radiative output

Cen A radiative output

M87 case:

Parameter	Value
Mass BH М вн	6 x 10 ⁹ M₀
Lorentz factor F	5
Jet kinetic power L _k	6,78 x 10 ⁴⁶ erg s ⁻¹
fraction of power in relativistic particles \mathbf{q}_{rel}	0,1
proton to electron ratio a	80
jet launching position z_0	$50 R_g = 4,42 \times 10^{16} cm$
particle acceleration position z_{acc}	250 $R_g = 2,21 \times 10^{17} \text{ cm}$
jet opening angle $\boldsymbol{\xi}$	1,5°
viewing angle $\boldsymbol{\theta}$	20°
acceleration efficiency η	0,0001
spectral index injection s	2,4
dust column density N н	2,5 x 10 ²⁰ cm ⁻²

M87 radiative output

21/07/2010

M87 radiative output

Final comments

Cen A SED:

- inhomogeneous in time, angular & spatial resolution
- Nevertheless, spectral energy distribution basically consistent with the multi- λ emission from Cen A.
- VHE emission : p p interactions.
- Hard X-ray peak : electron synchrotron radiation
- **Soft** γ : mainly IC emission

Final comments

Photoionization interactions in the surrounding dust:

- Drastic modulation in the electron synchrotron spectrum (broadband range 10⁻⁵ – 10⁷eV)
- Maximum proton energy obtained: ~ 3 × 10¹⁷ eV.
 - Other mechanisms for UHECR observed by Auger:
 - Shear acceleration along the jet (Rieger et Aharonian, 2009)
 - Production of neutrons in the jet which decay in protons near radio lobes (re-acceleration)

Final comments

- M87 case:
 - Model compatible with stationary SED.
 - VHE emission & Soft γ: p p interactions.
 - Steeper injection (spectral index of 2.4)
 - Bigger proportion of protons
 - Challenge : flux variability

Neutrino production

