

Giovanni Morlino

INAF/Osservatorio Astrofisico di Arcetri

In collaboration with: Elena Amato, Pasquale Blasi & Damiano Caprioli

> **TeV Particle Astrophysics Paris, July 19th - 23th, 2010**

Investigating whether the SNR RX J1713.7-3946 can be an efficient Cosmic Rays accelerator, studying the origin of TeV γ -ray emission

Method

We use the nonlinear diffusive shock acceleration theory coupled with resonant magnetic field amplification to compute the nonthermal particle population and the associated photon emission

SNRs in TeV y-Rays

RX J1713.7 is one of 4 shell-like
 SNRs observed in TeV band

 All show correlation with nonthermal X-ray

RX J1713 has been detected by Fermi-LAT in GeV band: • Faint source in a complicated region

• Extended source

[Figures from Funk (2009)- Fermi Symposium II]

X-ray Observations and Magnetic Field

The magnetic field is a key parameter to understand the TeV emission

Assuming that the thickness of X-ray rims is due to sever synchrotron losses, we can infer the magnetic field ~ $100 \,\mu\text{G}$

Basic Features of NLDSA model

If acceleration is efficient CRs modify the shock structure in a complicated way. We need a nonlinear theory able to describe how all elements feedback on all others → we use an iterative method

> Shock structure determine the injection of particles in the acceleration process Thermal leackage

Acceleration efficiency determine the shock structure CRs produce magnetic turbulence - resonant streaming instability

Diffusion properties determine: - maximum energy - acceleration efficiency

Turbulence modifies diffusion properties

We use the model described in Blasi (2002), Blasi et al. (2005), Amato & Blasi (2006) Results are presented in Morlino, Amato & Blasi (2009)

- Solution of stationary transport equation in a plane shock geometry
- Bohm-like diffusion coefficient in the local amplified magnetic field
- Particle injection according to the thermal leakage model

INNOVATIVE ELEMENTS

- Resonant magnetic field amplification and compression
- Inclusion of dynamical reaction of amplified magnetic field onto the shock

Basic Features of NLDSA model

Age ~ 1600 yr Distance ~ 1 kpc

Model Parameters

- T₀ Temperature (10⁶ K)
 U_{sh} shock speed
 n₀ upstream density
 B upstr magnetic field
- B₀ upstr. magnetic field ~2-4 μG
- **ξ** acceleration efficiency
- K_{ep} injected e/p ratio

Maximum energy of both electrons and protons are computed consistently using nonlinear theory in the amplified magnetic field

Leptonic Scenario: Inefficient Acceleration

Hadronic Scenario: Efficient Acceleration

Thermal X-ray lines: is the Hadronic Scenario ruled out?

Ellison et al. (2010) showed that

If ISM density ~ 0.1 cm⁻³ → Coulomb collisions can heat electrons enough to produce observable X-ray lines above the Suzaku observed flux

Thermal X-ray lines: is the Hadronic Scenario ruled out?

Ellison et al. (2010) showed that

If ISM density ~ 0.1 cm^{-3} → Coulomb collisions can heat electrons enough to produce observable X-ray lines above the Suzaku observed flux

Possible caveats:

- Chemical composition of circumstellar medium different from the assumed solar one

Non uniform circumstellar medium [see Zirakashvili & Aharonian 2009]

 $n_0 = 0.05 \ cm^{-3}$

The dispute between Hadronic vs Leptonic scenario is still not solved

	Non-thermal X-ray	Thermal X-ray	GeV (Fermi-LAT)	TeV	X-ray filaments
HADRONIC (efficient acceleration)	GOOD	BAD	NOT SO GOOD	GOOD	GOOD
LEPTONIC (inefficient acceleration)	GOOD	GOOD	GOOD	BAD	BAD

Uchiyama et al.(2008) observed whit CHANDRA rapid variations of single X-ray spots of order ~1 year

Assuming that this is due to synchrotron losses they infer a magnetic field ~mG observing

Predictions from other Authors

