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A word about statistics: 

90% of the game is half mental. 

Yogi Berra
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Exploration with “random scans”

• Points accepted/rejected in a in/out 
fashion (e.g., 2-sigma cuts)

• No statistical measure attached to 
density of points: no probabilistic 
interpretation of results possible, 
although the temptation cannot be 
resisted...

• Inefficient in high dimensional 
parameters spaces (D>5) 

• HIDDEN PROBLEM: Random scan 
explore only a very limited portion of 
the parameter space! 

C. F. Berger, J. S. Gainer, J. L. 
Hewett, and T. G. Rizzo, 
Supersymmetry Without 
Prejudice, JHEP 02 (2009) 023, 
[arXiv:0812.0980

check this for random scan of the 
pMSSM

One recent example: 
Berger et al (0812.0980)

pMSSM scans 
(20 dimensions)
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Random scans explore only a small fraction of the 
parameter space

• “Random scans” of a high-
dimensional parameter space only 
probe a very limited sub-volume: 
this is the concentration of 
measure phenomenon.

• Statistical fact: the norm of D 
draws from U[0,1] concentrates 
around (D/3)1/2 with constant 
variance 

1

1



Roberto Trotta 

Geometry in high-D spaces

• Geometrical fact: in D dimensions, most of the volume is near the boundary. The 
volume inside the spherical core of D-dimensional cube is negligible. 

Volume of cube

Volume of sphere

Ratio Sphere/Cube

1

1

Together, these two facts mean that random scan only explore a very small 
fraction of the available parameter space in high-dimesional models.
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2D scans

Roszkowski et al (2001)

Determining constraints on SUSY models is a multi-dimensional problem. Even in one of 
the simplest cases, the CMSSM, there are four 4 parameters (M0, M1/2, A0, tanβ) as well as 
SM parameters (e.g. Mtop, Mb) The traditional strategy in the field was to carry out “2D 
scans” by fixing the other relevant parameters to certain values. 
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Dependency on SM (nuisance) parameters

Mtop=170 GeV Mtop=180 GeV

There is also a strong dependence on the important SM parameters! 
(which are known only with limited accuracy)
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Impact of top mass on the relic abundance

Roszkowki et al (2007)

Changing Mtop within ±1σ has dramatic consequences for the predicted relic 
abundance: this parameter cannot be fixed to its central value.
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Solution: global fits

       5 

Carry out a simultaneous fit 
of all relevant SUSY and SM 
parameter to the experimental 
data/constraints.

Marginalize (= integrate) or 
maximise along the hidden 
dimensions to obtain  results 
that account for the multi-
dimensional nature of the 
problem.  
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       Wmap blobs today

The “WMAP strips”
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       WMAP strips a few years ago

0306219 [hep-ph] 

In 2D scans, enforcing the 
cosmological relic abundance 
results in narrow “allowed 
regions” (the “WMAP strips”), 
whose location changes with 
the value of the fixed 
parameters. 

Once fixed parameters are 
included and hidden 
dimensions accounted for, 
WMAP strips widen to 
become “WMAP blobs”
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Bayesian methods on the rise
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The frequentist approach (= probability as frequency, based on the 
likelihood) is naturally suited to particle physics. Bayesian methods are 
being imported from astrophysics, where they are the norm:
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P (θ|d, I) = P (d|θ,I)P (θ|I)
P (d|I)

For parameter inference it is sufficient to 
consider

P (θ|d, I) ∝ P (d|θ, I)P (θ|I)

posterior ∝ likelihood× prior
prior

posterior

likelihood

θ
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posterior likelihood prior

evidence 

θ: parameters
d: data
I: any other external information, 
or the assumed model

Bayes’ theorem
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The matter with priors 

• In parameter inference, prior dependence will in principle vanish for strongly 
constraining data. 

THIS IS CURRENTLY NOT THE CASE EVEN FOR THE CMSSM! 

Priors 

Likelihood (1 datum) 

Posterior after 1 datum Posterior after 100 data 
points 

Prior 

Likelihood 

Posterior 

Data 
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Global fits in the LHC era

O. Buchmueller, R. Cavanaugh, A. De Roeck, J.R. Ellis, 
H.Flacher, S. Heinemeyer, G. Isidori, K.A. Olive,

 F.J. Ronga, G. Weiglein

MasterCode

SuperBayeS

Fittino

S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, 
F. Feroz, M.P. Hobson

H. Flächer, M. Goebel, J. Haller, 
A. Höcker, K. Mönig, J. Stelzer

P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann

F. Feroz, L. Roszkowski, R. Ruiz de 
Austri, R. Trotta

Sfitter

R. Lafaye , M. Rauch, T. Plehn, D. Zerwas 

GFitter
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Favoured regions:
likelihood-based approach

• Due to the weak nature of constraints, different scanning techniques and statistical 
methods will generally give different answers

• Likelihood-based methods: determine the best fit parameters by finding the 
minimum of -2Log(Likelihood) = chi-squared 

• Markov Chain Monte Carlo (MCMC) 

• MCMC and Minuit as “afterburner”

• Simulated annealing

• Genetic algorithm 

• Determine approximate confidence intervals: 
Local Δ(chi-squared) method

θ

χ2

∆χ2 = 1

≈ 68% CL
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Favoured regions:
Bayesian approach

• Use the prior to define a metric on parameter space. 

• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 

• Markov Chain Monte Carlo (MCMC) 

• Nested sampling

• Hamiltonian MC 

• Determine posterior credible regions: 
e.g. symmetric interval around the 
mean containing 68% of samples 

SuperBayeS
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Marginalization vs profiling (maximising) 

Marginal posterior:

P (θ1|D) =
�

L(θ1, θ2)p(θ1, θ2)dθ2

Profile likelihood: 

L(θ1) = maxθ2L(θ1, θ2)

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect
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Marginalization vs profiling (maximising) 

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect

Physical analogy:  (thanks to Tom Loredo) 

P ∝
�

p(θ)L(θ)dθ

Q =
�

cV (x)T (x)dVHeat: 

Posterior: 
Likelihood  = hottest hypothesis
Posterior = hypothesis with most heat



Roberto Trotta 

RGE

Non-linear
numerical
function

via SoftSusy 2.0.18 
DarkSusy 5.0 

MICROMEGAS 2.2 
FeynHiggs  2.5.1 

Hdecay 3.102 

Constrained MSSM analysis pipeline 

4 CMSSM parameters 
θ = {m0, m1/2, A0, tanβ}

(fixing sign(μ) > 0)

4 SM “nuisance
parameters” 

Ψ={mt, mb,αS, αEM }

Observable
quantities

fi(θ ,Ψ)

CDM relic abundance
BR’s

EW observables
g-2

Higgs mass
sparticle spectrum

(gamma-ray, neutrino,
antimatter flux, direct 
detection x-section)

Data: 
Gaussian likelihoods 

for each of the Ψj 
(j=1...4)

Data: 
Gaussian likelihood

(CDM, EWO, g-2, b→sγ, ΔMBs)

other observables have 
only lower/upper limits

Physically acceptable?
EWSB, no tachyons, 

neutralino CDM 

YES

NO

Likelihood = 0
SCANNING ALGORITHM 

Joint likelihood function
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Global CMSSM scans 

• Bayesian approach led by two groups (early work by Baltz & Gondolo, 2004):

• Ben Allanach (DAMPT) and collaborators (Allanach & Lester, 2006 onwards)

• Ruiz de Austri, Roszkowski & RT (Ruiz de Austri et al, 2006 onwards) 
+ Feroz & Hobson (MultiNest), + Silk (indirect detection), + Strigari (direct detection), + Martinez et al (dwarfs), + de 

los Heros (IceCube), + Bertone et al (pMSSM)

SuperBayeS public code available from: superbayes.org

Allanach & Lester (2006) Ruiz de Austri, Roszkowski & RT (2006)

See also: Ellis et al (2004 onwards), Buchmuller et al (2008, 2009), Scott et al (2009), Akrami et al (2009)
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Key advantages of the Bayesian approach

• Efficiency: computational effort scales ~ N rather than kN as in grid-scanning 
methods. Orders of magnitude improvement over grid-scanning.

• Marginalisation: integration over hidden dimensions comes for free.  

• Inclusion of nuisance parameters: simply include them in the scan and 
marginalise over them. 

• Pdf’s for derived quantities: probabilities distributions can be derived for any 
function of the input variables (crucial for DD/ID/LHC predictions)



• Implements the CMSSM, but can be easily extended to the general MSSM  

• New release (v 1.50) in June 2010: linked to SoftSusy 2.0.18, DarkSusy 5.0, 
MICROMEGAS 2.2, FeynHiggs  2.5.1, Hdecay 3.102.

• Includes up-to-date constraints from all observables, plotting routines, statistical 
analysis tools, posterior and profile likelihood plots. Fully parallelized, MPI-ready, 
user-friendly interface

• MCMC engine (Metropolis-Hastings, bank sampler), grid scan mode, multi-modal 
nested sampling aka MultiNest (Feroz & Hobson 2008) 
A full 8D scan now takes less than 2 days on 8 CPUs.

www.superbayes.org
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The future: “instantaneous” 
inference with neural networks 

• Standard MCMC
(SuperBayeS v1.23, 2006) 
720 CPU days 

• MultiNest 
(SuperBayeS v1.5, 2010)
16 CPU days
speed-up factor: ~ 50

m1/2 (GeV)

m
0 (G

eV
)

Bridges et al (2009)

68%, 95% contours

Black: SuperBayeS pdf

Blue: Neural Network

true value

280 300 32050

100

150

200

250

300

Simulated LHC data

PRELIMINARY• SuperBayeS+Neural Networks
(Bridges, RT et al, in prep)
15 CPU minutes 
speed-up factor: 70’000
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Nested sampling 

x1

L(x)

0

1

2
!

!

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

Feroz et al (2008), arxiv: 0807.4512, Trotta et al (2008), arxiv: 0809.3792 

(animation courtesy of David Parkinson)

X(λ) =
�
L(θ)>λ P (θ)dθ

An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

P (d) =
�

dθL(θ)P (θ) =
� 1
0 X(λ)dλ
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The MultiNest algorithm

• MultiNest: Also an extremely efficient sampler for multi-modal likelihoods! 
Feroz & Hobson (2007), RT et al (2008), Feroz et al (2008)

Target Likelihood Sampled Likelihood 



Prediction is very difficult, especially about the 
future. 

Niels Bohr



CMSSM today: likelihood-based results

MasterCode

Best fit points (µ>0) 

MasterCode
M0=60 , M1/2=310 A0=130, tanβ=11

Fittino
M0=76 , M1/2=332 A0=383, tanβ=13

0907.2589 [hep-ph]
0907.4468 [hep-ph]
0808.4128 [hep-ph]



CMSSM today: Bayesian results

       27 

“flat prior”
Uniform in M0,M1/2,A0,tanβ

“log prior”
Uniform in log(M0), log(M1/2), 

A0, tanβ

“naturalness prior”
Penalizes regions of parameter 

space that are “fine tuned”

0807.4512 [hep-ph] 0809.3792 [hep-ph] 0705.0487 [hep-ph]

Posterior distributions
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“log prior”

Δχ2

Both methods find a 
favoured low mass SUSY 
region: how constrained is 

it? 
The g-2 constraint is 

critical in robustly 
excluding TeV-scale 

masses in the frequentist 
approach 

No g-2

With
g-2

0907.4468 [hep-ph]

MasterCode
profile likelihood

SuperBayeS: profile likelihood

CMSSM today: Frequentist vs Bayesian
SuperBayeS: posterior

MasterCode
profile likelihood

Δχ2

2σ exclusion
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Profile likelihood results: comparison
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• Akram et al (0910.3950) adopted a genetic algorithm (GA)  to map out the profile likelihood.

• This allows to find isolated spikes in the likelihood in the high-mass region: 
is this something other frequentist fits might have missed?

overall best-fit
isolated local 

maxima

Genetic Algorithm
 profile likelihood

MultiNest 
profile likelihood

MasterCode
profile likelihood

excluded at ~ 3σ
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Statistical conclusions

• Even one of the theoretically most constrained models (the CMSSM) shows signs of 
ambiguities in the statistical results

• This can be traced back to insufficiently constraining data (at present)

• Low-mass SUSY seems preferred but ~ TeV scale masses cannot be ruled out 
robustly 

• ALL ENSUING PREDICTIONS HAVE TO BE TAKEN WITH A LARGE GRAIN OF 
SALT 

grain of salt
ATLAS 

(to scale)
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Direct detection prospects 

95%

95%

Generally favourable prospects for WIMP discovery in the CMSSM framework 
for upcoming detectors are robust, independently of the choice of statistics.
Notice: canonical local density & velocity dispersion assumed

SuperBayeS
profile likelihood

SuperBayeS
posterior 

MasterCode
profile likelihood

reach of 1t of Xe detector

reach of 25 kg Ge
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More general models: NUHM 
• Relaxing some of the universality assumptions at the GUT scale: Non-Universal 

Higgs Model with 2 non-universal Higgs masses. 6 SUSY + 4 SM free parameters:

NUHM
posterior

NUHM
profile likelihood

{m0, m1/2, tanβ, A0, MHu , MHd}

reach of 1t 
of Xe 

detector

Roszkowski et al (0903.1279)
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More general models: pMSSM
• Instead of using GUT-scale parameters, fit with EW-scale variables. 20 free 

parameters in the Phenomenological MSSM + 5 SM parameters. 
Prior dependence stronger than in the CMSSM due to much stronger volume 
effects.

pMSSM
flat prior 

pMSSM
log prior 

AbdusSalam et al (0904.2548)

reach of 1t 
of Xe 

detector
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Astrophysical uncertainties

• The observable recoil rate in DD experiments depends both on particle physics 
properties and on astrophysical quantities which are poorly constrained:

Bertone & Serpico (1006.3268) tried to  quantify such “systematic” 
uncertainties, estimating an envelope of ~ ± 30% uncertainty for the recoil 
rate (excluding the impact of ρ)

local DM 
density

DM velocity 
distribution

(escape velocity, velocity 
dispersion, departures from 

Maxwell-Boltzman, anisotropic 
disperion, ...)

dR

dE
∼ σ

µ2

ρ⊙
mχ

F 2(E)
�

v>vmin

d3v
f(v)

v
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Determinations of the local density

Adapted from Weber & DeBoer (0910.4272)

Ullio & Catena 68% region (0907.0018)

• Parameterized MW 
model constrained using 
a variety of kinematic 
data 

• Ullio & Catena (2009): 
ρloc = 0.39±0.03 GeV/cm3

• However, Weber & 
DeBoer (0910.4272) find 
a much larger spread 
with statistically 
indistinguishable fit

• Probably systematic 
errors from partial 
modeling: see Pato et al 
1006.1322

χ2 = 1.25

χ2 = 1.27

χ2 = 1.40



log( 0) (Msol kpc 3)

Pr
ob

ab
ilit

y

5 6 7 8
0

0.2

0.4

0.6

0.8

1

r0 (kpc)

Pr
ob

ab
ilit

y

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

1 0 1
0

0.2

0.4

0.6

0.8

1

(r=8.5 kpc) (GeV cm 3)

Pr
ob

ab
ilit

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

vesc (km/s)

Pr
ob

ab
ilit

y

400 500 600 700
0

0.2

0.4

0.6

0.8

1

v0 (km/s)

Pr
ob

ab
ilit

y

100 200 300 400
0

0.2

0.4

0.6

0.8

1

Including astrophysical 
uncertainties 

• Model for the Milky Way: 
 bulge + disk + dark matter halo 

• Line-of-sight velocity dispersion 
can be used to constrain the 
potential (using spherical Jeans 
equation). Assume Maxwellian 
velocity distribution. 

• Use artificial Sloan-like l.o.s. data 
to estimate potential of the 
technique 

• Result: 
projected error on ρloc of order 
~20% 

Local DM density

Circular velocity

4-parameters
 model 7-parameters

 model

Simulated Sloan constraints

Strigari & Trotta, 0906.5361

halo

disk

bulge
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WIMP mass (GeV)

1 tonne Xe detector
(projection)

True value15
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Generic WIMP

40 60 80
9.5

9

8.5

8

Constraints including Milky Way modelling and Sloan
Biased constraints without Milky Way modelling

The importance of 
modeling the MW

• Assuming an incorrect local 
density (by a factor of 2) can lead 
to a 15 sigma bias in the 
reconstructed cross section

• Accurate modeling of the MW 
may convert potentially 
catastrophic systematic errors into 
more manageable statistical errors

Strigari & Trotta (0906.5361)
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Identification of the cosmological DM 
with direct detection + LHC
• If a signal is seen both at the LHC and in direct detection detectors, how can we 

check that this WIMP makes up the bulk of the cosmological relic density?

• Fit low-energy SUSY parameters and try to predict Ωh2 from LHC data alone.

• Problem: LHC data alone are unable to constrain the relic abundance. Even DD data 
cannot break the degeneracy (if ρχ assumed fixed): 

LHC data only
(pMSSM)

LHC + DD
fixed ρχ

true value true value

Bertone et al, 1005.4280
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Identification of the cosmological DM 
with direct detection + LHC
• Strategy: assume that the local density scales with 

the cosmological relic abundance (scaling Ansazt):

LHC data only
(pMSSM)

LHC + DD
fixed ρχ

LHC + DD
ρχ scales with Ωh2

ρχ ∝ Ωh2χ

Bertone et al, 1005.4280

scaling Ansatz breaks degeneracies 
in parameter space
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Physics conclusions

Cumberbatch, RT et al (in prep)

• No single probe can cover the whole 
favoured parameter space, not even the 
LHC. 

• Astroparticle probes (direct and indirect 
detection) can increase the coverage of 
the favoured parameter space, and 
deliver increased statistical robustness.

• High complementarity of LHC reach with 
direct detection methods. Lo
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WIMP mass (GeV)

XENON 10 excluded CDMS II excluded

Lux Zeplin reach

95% region from current data

Constrained MSSM

200 400 600 80011
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Models within LHC reach (18.3 %)
Models favoured by Planck (5.7 %)
Models within IceCube reach (6.5 %)



Thank you!


