

G. Bélanger LAPTH- Annecy

o Dark matter

- Prospects for DM production at LHC
- Determination of DM properties at LHC

• • • Dark matter: a WIMP?

- Strong evidence that DM dominates over visible matter. Data from rotation curves, clusters, supernovae, CMB all point to large DM component
- Structure formation : DM is mostly cold and weakly interacting
- DM stable at cosmological scale
- Is DM a new particle what are its properties?
- In standard cosmological scenario where DM particles are thermal equilibrium in early universe and during expansion universe DM "freeze-out", relic abundance

$$\Omega_X h^2 \approx \frac{3\times 10^{-27} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma v \rangle} ~~. \label{eq:Gamma}$$

• A WIMP has 'typical' annihilation cross section for $\Omega h^2 \sim 0.1$ (WMAP)

••• Direct Detection: limits/hints

- Direct detection can establish that new particle is DM
- Limits that probe parameter space of several models
- Hints of signals in DAMA, Cogent, CDMS...
- Searches in different nuclei: SI/SD check compatibility with NP scenario
- Caveats:
 - assumption about local density and velocity distribution
 - Uncertainties in nucleon matrix elements

Indirect detection: limits/hints

- Pair of dark matter particles annihilate and their annihilation products are detected in space
- Depend on $\sigma v + B.R.$ in different SM particles
- Caveat: strong dependence on DM distribution + propagation for charged particles
- Several new and upcoming results:
- PAMELA: no excess in antiproton but excess in positron
 - Can be explained by astro source : pulsar
- FermiLAT : photons from DM annihilation in GC and dwarf galaxies
- Neutrino telescopes (IceCUBE, Antares)

O. Adriani 0810.4995

Fermi 1001.4531

••• Which Dark matter candidate?

- Many WIMPs proposed : best motivated also solve hierarchy problem
 - Supersymmetry, Extra dimensions, Little Higgs, Extended Higgs
- Others motivated by hints in DM detection
 - PAMELA : leptophilic
 - Light DM (DAMA/Cogent/CDMS)
- Superwimps also work talks of L. Covi and T. Moroi
 - Gravitino, axion, axino

••• Which Dark matter candidate?

- Can invent a new particle that fits DM observables
- Harder to propose a new physics model that solves outstanding issues in SM + DM + satisfy all constraints
- Constraints on new physics from various precision observables (B physics, g-2, M_W , sin² θ eff), collider limits
- LHC will probe the new physics at TeV scale
- If new particles are found : provide better understanding of particle physics dependence in DM observables

• • • LHC and dark matter

- Search for new particles (including Higgs)
 - What is the discovery potential at LHC (within specific models)
- B physics : indirect constraints on new physics
- How well can the properties of dark matter be determined?
 - Strongly depends on the particle physics model and on details of given model, mass of new particles, couplings etc..
- Signals in different types of experiments allow cross checks
 - Possible tests of cosmology, dark matter distribution...
- What the LHC cannot do:
 - Produce directly large numbers of weakly interacting particle, mainly in decay products of strongly interacting particles
 - Cannot know for sure there is stable particle (missing energy)
 - Say anything directly about dark matter spatial and velocity distributions

• • • SUSY as a test case

- Well-motivated
 - SUSY: solution to hierarchy problem cancellation of divergences in Higgs mass
 - LSP is stable because of R-parity (also stabilizes the proton)
- Well studied at colliders
- Cover several possibilities for DM candidates (neutralino, gravitino, sneutrino), DM annihilation mechanisms, DM interaction with nuclei
 - Neutralino LSP (Majorana)
 - Neutral spin ½ SUSY partner of gauge bosons (Bino, Wino) and Higgs scalars (Higgsinos)

 $\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W} + N_{13}\tilde{H}_1 + N_{14}\tilde{H}_2$

• • • The neutralino

be light

0

• Mixed W/B/H-ino

Bino: annihilates into

fermions – sfermions must

All (not pure bino): annihilation Higgs resonance

 $\sigma v \propto m_{\tilde{\chi}}^2 / (4m_{\chi}^2 - m_H^2)^2$

• All: coannihilation possible suppression $exp(-\Delta M/T)$

 $\sigma v \propto m_{ ilde{m{v}}}^2/m_{ ilde{m{r}}}^4$

$$\sigma v \propto 1/m_{\tilde{\chi}}^2$$

• • • DM production at LHC

- pp collider 7-14TeV
- Direct production : missing energy no trigger
- Production of coloured particles: DM in decay chain
- pT : transverse p lepton, jets
- E_T(miss) : sum all pT
 - DM, neutrinos
 - Particle missed

• ...

• Meff: P_T of first 4 jets+ E_T miss

• • • SUSY production at LHC

• Production cross sections for coloured particles are large

- If squarks heavy : direct chargino/neutralino dominate
- Background is an issue cuts to enhance signal

••• LHC reach

- Production squarks/gluinos
- Signatures: missing E_T + multiple hard jets (generic or b) + isolated leptons or photons
 - One Lepton
 - Dileptons same/opposite
 - trilepton
 - Four(+) leptons
- Cuts to reject background
- To exploit first data avoid signatures with E_T miss (require good knowledge of detector performance)
 - Jets, b/τ jets, di/trileptons
 - Limited reach extend LEP

LHC – 7 TeV

Baer et al 1004.3594

••• LHC14 reach

- Production squarks/gluinos
- Signatures: missing E_T + multiple hard jets (generic or b) + isolated leptons or photons
 - One Lepton
 - Dileptons same/opposite
 - trilepton
 - Four(+) leptons
- Cuts to reject background
- To exploit first data avoid signatures with E_T miss (require good knowledge of detector performance)
 - Jets, b/τ jets, di/trileptons
 - Limited reach extend LEP

Baer, Tata, 0805.1905

•Squarks < 2.5TeV, gluinos<2TeV

LHC and DM in CMSSM

- LHC14: good discovery potential for model in agreement (or not) with WMAP
 - Nothing guaranteed
- o The hard cases :
 - very heavy squarks and only light gluino neutralino/ chargino – good signature in DD
 - heavy Higgs and neutralino annihilation on resonance (LSP rather heavy)

Applied App

mSUGRA : $A_0 = 0, \mu > 0, \tan\beta = 55, m = 172.6 \text{ GeV}$

Baer, Park, Tata 0903.0555

Constraints on New physics

o Precision, B physics, g-2, Ωh^2

$\sin^2 \theta_w^\ell(Q_{\rm fb})$	0.2324 ± 0.0012
M_W [GeV]	80.399 ± 0.025
$BR_{b \rightarrow s\gamma}^{exp}/BR_{b \rightarrow s\gamma}^{SM}$	$1.117\pm0.076_{\rm exp}\pm0.082_{\rm th(SM)}$
$BR(B_s \rightarrow \mu^+ \mu^-)$	$<4.7\times10^{-8}$
$BR_{B \rightarrow \tau \nu}^{exp} / BR_{B \rightarrow \tau \nu}^{SM}$	$1.25\pm0.40_{\rm [exp+th]}$
$BR(B_d \rightarrow \mu^+ \mu^-)$	$<2.3\times10^{-8}$
$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	$(30.2\pm8.8)\times10^{-10}$
$M_h \; [\text{GeV}]$	> 114.4 (see text)
$\Omega_{\rm CDM}h^2$	0.1099 ± 0.0062

- LEP constraints + Tevatron..
- Several groups have performed global analysis to determine parameter space of CMSSM and more general models

The CMSSM

• MCMC analysis

- m0, m1/2, A0, $tan\beta$, $sign(\mu)$ + SM (mt mb, alpha)
- covers large area of parameter space
- Allowed regions: bino or bino/Higgsino LSP, stau coannihilation.
- Not yet precise information on DM properties even in the context of a well-defined model
- Frequentist vs Bayesian statistics, prior dependence

Allanach et al. 2007

Roszkowski et al 0705.2012

• Frequentist + Chi2 with MCMC sampling

- Preferred region in low $m_0-m_{1/2}$ plane for tb=10
- Slight preference for light SUSY scale even in g-2 is removed from the fit
- o Comparison with CMS reach for 0.1-1fb⁻¹ at 7TeV (F. Ronga)

Going beyond CMSSM

o NUHM

- Buchmuller et al (0905.5568)
- MSSM7 : from DM point of view μ and M_A are free parameters
 - DM can be bino/Higgsino and can be rather heavy
 - GB et al (0906.5048)
- MSSM19-25 : allow for non-universal gaugino mass in particular wino LSP
 - AbdusSalam et al (0904.2548)
 - Berger et al (0812.0980)
- CNMSSM: singlet extension of MSSM, LSP singlino
 - Roszkowski et al

• • • | MSSM7

- No guarantee of signal at LHC in squark/gluino or Higgs or B physics
 - heavy sparticles

• Good complementarity with DD/Higgs search

If coloured particles very heavy

Heavy Higgs at LHC	$\sigma_{\chi p}^{SI}$ (pb)	$B(B_s \to \mu^+ \mu^-)$	
		$> 5. \times 10^{-9}$	$< 5. \times 10^{-9}$
Yes	$20.6\%~(>10^{-9})$	5.6%	15%
24.2%	$3.6\% (< 10^{-9})$	1.7%	1.9%
No	$54.9\% (> 10^{-9})$	0.3%	54.6%
75.8%	$20.9\% (< 10^{-9})$	0.7%	20.2%

DM properties at LHC

- How well can the properties of dark matter be determined?
- Why we need that ?
 - Compare with signals in DD or ID –LSP is DM -- reconstruct DM density, velocity distributions...
 - compare with Ωh^2 extracted from cosmo, test standard picture : e.g. in scenarios with low reheat temperature relic density very different Drees et al 0704.1590

• What needs to be measured at colliders?

- Mass and couplings of LSP
 - In MSSM : measure neutralino and chargino masses to determine $M_1, M_2, \mu, tan\beta$
- Mass of new particles that contribute to (co)annihilation (or lower limits)
 - In MSSM: stau, squark(stop), other slepton
- Mass of Higgs (or any other potential resonance)

• • • Parameter determination LHC

- $E_{Tmiss} \rightarrow no mass peak$
- Exploit end-points in kinematic distribution for mass determination
- Assume particles in decay chain are correctly identified

$l^+ l^-$	edge	m_{ll}^{max}
l^+l^-q	edge	m_{llq}^{max}
l^+l^-q	threshold	m_{llq}^{min}
$l^\pm q$	high-edge	m_{lq}^{high}
$l^{\pm} q$	low-edge	m_{lq}^{low}

Bachacou, Hinchliffe Paige 1999 Allanach et al 2000 • • • Endpoints

$$m_{ll}^{\text{max}} = \sqrt{\frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{e}_R}^2)(m_{\tilde{e}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{e}_R}^2}}$$
$$m_{jl}^{\text{min}} = \sqrt{\frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{e}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{2m_{\tilde{e}_R}^2 - m_{\tilde{\chi}_1^0}^2}}$$

- Mass differences- (few) percent level
- Masses typically 10%
- Also possible combine endpoints +cross-sections Lester, Parker, White '05

Parameter determination

- Strategy: measure as many masses, couplings, branching fractions as possible → constrain model parameters
- See if fits DM observables (Ωh^2 ,DD)
- Many case studies
 - Nojiri, Tovey, Polesello; Baltz et al. Arnowitt, Dutta, Kamon; Barr Lester, White, Gunion et al, Raklev, Kraml, Matchev et al, Matsumoto et al,

Parameter determination

$$\tilde{q} \to q \tilde{\chi}_2^0 \to q \tilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$$

- First results found for favourable cases (SPS1a) with light spectrum and long decay chains
 - Mass LSP 20% level
 - tanβ from Higgs sector
 - Stau mixing
- From LHC about 15% precision on relic abundance
- Order of magnitude on DD

• • • A harder one : heavy scalars

- Precision required on SUSY parameters for $\delta\Omega/\Omega=10\%$
- Bino/Higgsino scenario in MSSM with heavy squarks
- Annihilation gauge bosons, tt
- Couplings sensitive to Higgsino fraction depend $M_{1,\mu}$ both same order
- need precise M_1, μ (m χ_3) at least %
- Lower limits on squarks and Higgs

Allanach, et al, hepph/0410091

- Gluino only accessible, 3 neutralinos + chargino in decay
- mass differences could be measured from m(ll) 2 edges : χ_{2}, χ_{3}
 - deSanctis, Lari, Montesano, Troncon, 0704.2515 (hep-ex)
- Also m(bb), m(bbll) + total cross section with M_{eff}: sensitive to m(gluino)
 - About 10% accuracy on masses
 - Not enough for precise neutralino fraction nor for relic density

Determining neutralino mixing

- Add new observables: shape of dilepton invariant mass spectrum
- Changing LSP component : modifies the shape

 $\frac{BR(\tilde{g} \rightarrow \ldots \rightarrow \tilde{\chi}_{2}^{0} + X) \times BR(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}l^{+}l^{-})}{BR(\tilde{g} \rightarrow \ldots \rightarrow \tilde{\chi}_{3}^{0} + X) \times BR(\tilde{\chi}_{3}^{0} \rightarrow \tilde{\chi}_{1}^{0}l^{+}l^{-})}$

- Significantly improves constraint on neutralino mixing and prediction of relic density and DD rate
- Main uncertainty Higgs mass

White Feroz 1002.1922

Importance of Higgs search

- Light or heavy Higgs exchange can dominate DM annihilation resonance effect need to check whether or not Higgs contribute
 - Search for h
 - Search for heavy Higgs
 - bbH, H->ττ
 - Good at Large tanβ
 - SUSY to Higgs decay
 - Under investigation

• Direct detection rate often dominate by interaction of DM with nuclei via light Higgs exchange- coupling of DM to light Higgs important parameter

Importance of Higgs search

- Light or heavy Higgs exchange can dominate DM annihilation resonance effect need to check whether or not Higgs contribute
 - Search for h
 - Search for heavy Higgs
 - bbH, H->ττ
 - Good at Large tanβ
 - SUSY to Higgs decay
 - Under investigation

• Direct detection rate often dominate by interaction of DM with nuclei via light Higgs exchange- coupling of DM to light Higgs important parameter

• • • A difficult case with $\Omega \sim 1$

- MSSM with additional singlet superfield provide naturally μ of weak scale : NMSSM
- Higgs sector: 3 scalars, 2 pseudoscalars extra fields are dominantly singlet
- Neutralino sector: 5 neutralinos
- Annihilation near new resonance : $\Omega h^2 \sim 0.1$ in region of parameter space where $\Omega h^2 \sim 1$ in CMSSM
- After measurement of parameters would likely conclude that "collider relic abundance" does not match cosmological measurement
 - Non-standard cosmological scenario or new particle?
 - Search extra Higgs : possible only in a few cases

G.B., Hugonie, Pukhov, 0811.3224

• • • Other models

- Dark matter in MUED with KK parity for proton stability : photon partner- spin1
- DM rather heavy (500-900 GeV) Tait Servant 2002: not for LHC7
- Many similarities to SUSY partner for each SM particle (same spin)
- Production and decay of coloured particles analog to SUSY
- Spin determination is crucial to differentiate with SUSY
 - Alves Eboli, Plehn, hep-ph/0605.067, Barr, hep-ph/0511115
- Also new resonances

$$f_0 f_0 \rightarrow Z^{(2)} \rightarrow I^+ I^-$$

• In general in NP model if light coloured particles good prospects, e.g. littlest Higgs model with new quarks < TeV scale : discovery guaranteed + collider prediction of relic abundance~10% (Matsumoto 2008)

• • Conclusions

- Understanding the nature of Dark matter : an exciting challenge for the LHC
- Prospects for discovering physics beyond the standard model : excellent
- "Testing cosmology and DM" at colliders : more difficult but useful information in many cases
 - This is not the final answer: with data experimentalists usually do better than expected
- Colliders complementary to direct/indirect detection better control of particle physics aspects