Non-linear diffusive shock acceleration and the SNR paradigm for Galactic CRs

Damiano Caprioli

In collaboration with *Pasquale Blasi, Elena Amato* INAF / Oss. Astrofisico di Arcetri, Firenze (Italy)

The SNR paradigm for galactic CRs

- SNe may account for Galactic CR energetics
- Diffusive Shock Acceleration provides power law spectra (E⁻²) with the *correct* index

BUT

- Are CRs passive spectators of the shock dynamics?
- What is the maximum energy achievable in SNRs?
- How are particles released in the Galaxy?

Need for a Non-Linear theory of DSA

CR-modified shocks

- "Standard" calculations leads to very efficient acceleration (R_{tot}~10-100)
- The spectra of the accelerated particles is concave (and even as flat as E^{-1.2})
 - At odds with multi-wavelength observations!

Magnetic Field Amplification

Station .	The width ≻ B _{ds} ≈7	n of the rims i 0-500 µG >>		
	SNR	B _{ds} (μG)	P _{B,ds} (%)	
	Cas A	250-390	3.2-3.6	
	Kepler	210-340	2.3-2.5	Care Soll
	Tycho	240-530	1.8-3.1	SN 1006
	SN1006	90-110	4.0-4.2	
	RCW 86	75-145	1.5-3.8	
	Völk, Berezhko & Ksenofontov 2005 Parizot et al. 2006			
Kepler	The down is at most	stream magne 2 - 4% of the k	RCW 86	
But unstream P-v	erv likelv	B^2 . –		1/2 (T)

dominates over P_{gas}, since:

$$\frac{B^2}{8\pi} > nkT \Longrightarrow B > 6\mu G n^{1/2} \left(\frac{T}{10^4 K}\right)$$

The dynamical feedback of MFA

• Three-fluid model with Alfvén waves excited by streaming instability

$$R_{tot}^{\gamma+1} = \frac{M_0^2 R_{sub}^{\gamma}}{2} \left[\frac{\gamma + 1 - R_{sub}(\gamma - 1)}{1 + \Lambda_B} \right]$$

$$\Lambda_B = W \left[1 + R_{sub} \left(2/\gamma - 1 \right) \right]$$

Ratio between magnetic and plasma pressure upstream

• In young SNRs: W ≈ 1-100

45 **Jnmagnetized** 40 35 30 ಜ್ 25 20 W=3 15 10 W=10 5 2.5 3.5 3 2 R_{sub}

DC, Blasi, Amato, Vietri 2008

The magnetic turbulence feedback cannot be neglected and provides a smoothening of the precursor

Magnetic feedback on the spectra

$T_0(\mathbf{K})$	Λ_B	ξ_1	$p_{max}(10^6 GeV)$	R_{sub}	R_{tot}	$T_2(10^6{\rm K})$
$10^4 \\ 10^4$	No Yes	$\begin{array}{c} 0.97 \\ 0.58 \end{array}$	$\begin{array}{c} 0.24 \\ 1.17 \end{array}$	$3.58 \\ 3.84$	$\begin{array}{c} 112.1 \\ 9.22 \end{array}$	$0.88 \\ 126.5$
$\frac{10^{6}}{10^{6}}$	No Yes	$\begin{array}{c} 0.77 \\ 0.54 \end{array}$	$0.59 \\ 1.14$	$3.76 \\ 3.84$	$\begin{array}{c} 16.6\\ 8.44 \end{array}$	$42.3 \\ 154.8$

Turbulent (Alfvèn) Heating

- Often explained as due to non-linear Landau damping of the magnetic turbulence and invoked in order to reduce the precursor, but it:
 - Is expected to be relevant only if V_{sh} < 4000 (T/10⁵ K)^{1/2} km/s Völk & McKenzie 1981; Ptuskin & Zirakasvhili 2005
 - Cannot be too efficient, otherwise no MFA!!

$$\zeta = \Gamma_{damp} / \Gamma_{growth} <$$

R_t^{γ}	$\sum_{t=1}^{N+1} = \frac{N}{2}$	$\frac{I_0^2 R_{sub}^{\gamma}}{2} \left[\frac{\gamma + 1 - 1}{(1 + \Lambda_B)} \right]$	$\frac{R_{sub}(\gamma - \gamma)}{(1 + \Lambda_{7})}$	$\left[\frac{-1}{TH}\right]$	$\Lambda_{TH} = \zeta($	$(\gamma - 1)\frac{1}{l}$	$\frac{M_0^2}{M_A} \left[1 - \left(\right. \right]$	$\left(\frac{R_{sub}}{R_{tot}}\right)^{\gamma} \bigg]$
ζ	ξ_1	$p_{max}(10^6 GeV)$	R_{sub}	R_{tot}	B_1/B_0	W	$B_2(\mu G)$	$T_2(10^6{\rm K})$
0	0.60	1.17	3.76	9.52	25.3	1.941	475.6	114.6
0.5	$0.65 \\ 0.55$	$\begin{array}{c} 0.84\\ 0.53\\ 0.12\end{array}$	3.65 3.68 3.85	10.96 10.76 8.60	12.8 2.26	0.390 0.115 0.005	379.0 232.5 43.5	132.0 128.3 162.2

 $B_0=10 \ \mu G$; Age=1000 yr; $T_0=10^5 \ K$

DC, Blasi, Amato, Vietri 2009

May lead to a too large downstream temperature and too large thermal emissivity, see RX J1713.7-3946)

Kinetic approaches to NLDSA

MONTE CARLO: account for CR anisotropy

Jones, Ellison 1991; Ellison et al. 1990;1995; Vladimirov, Ellison, Bykov 2006

• FULLY NUMERICAL: time-dependent

Kang, Jones 1997;2005;2008; Berezhko, Völk 1997;2004;2007; Zirakashvili, Aharonian 2009; Ptuskin, Zirakashvili, Seo 2010

• **SEMI-ANALYTICAL**: versatile, computationally extremely fast

Malkov 1997; Blasi 2002; 2004; Amato, Blasi 2005; 2006, DC et al. 2009; 2010b

• All methods require an a priori description of:

- Particle transport (diffusion and convection)
- Magnetic field amplification
- Injection into the acceleration process
- Particle escape from the source
- For reviews on NLDSA see e.g. :

Drury 1983; Blandford, Heicler 1987; Jones, Ellison 1991; Malkov, Drury 2002

Why semi-analytical?

• The developed formalism is a very powerful tool since it:

- is very fast (a run takes 10"-1' on a laptop)
- has virtually no dynamical range limitation on P_{max}, M₀, …
- allows to scan a wide range of environmental parameters
- allows the inclusion of nuclei

- Applications to SNR shocks:
 - Hydro + Multi-wavelength analysis of single SNRs
 - Test the SNR paradigm for the origin of galactic CRs

A semi-analytic approach

- Solution of the stationary diffusion-convection equation
 - With momentum boundary p_{max} (Amato & Blasi 2005; 2006; Blasi, Amato & DC 2007)
 - With escape boundary x₀ (DC, Amato & Blasi 2010b)

Vs Numerical and Monte Carlo approaches

11

Scattering centre velocity

The velocity of the scattering centres naturally enters the transport equation

$$\tilde{u}(x)\frac{\partial f(x,p)}{\partial x} = \frac{\partial}{\partial x} \left[D(x,p)\frac{\partial}{\partial x}f(x,p) \right] + \frac{d\tilde{u}(x)}{dx}\frac{p}{3}\frac{\partial f(x,p)}{\partial p} + Q(x,p) \qquad \tilde{u}(x) = u(x) + v_W$$

How does v_W depend on the nature of the turbulence?

• It strongly affects the CR spectrum:

$$R_{sub} = \frac{u_1 + v_{w1}}{u_2 + v_{w2}} \qquad \qquad R_{tot} = \frac{u_0 + v_{w0}}{u_2 + v_{w2}}$$

- Resonant streaming instability (Skilling 1975)
 - > UPSTREAM: countergoing Alfvèn waves excited by CRs
 - DOWNSTREAM: isotropy? Reflection + transmission? Other instabilities?
 - In the background field or in the amplified field?
- Evidences of magnetic field amplification suggest:

$$v_w = -v_A = -\frac{\delta B}{\sqrt{4\pi\rho}} \approx -(0.01 \div 0.1)u$$

From accelerated particles to CRs

• Ejecta dominated stage

- The magnetic turbulence and P_{max} increase with time
- Sedov-Taylor stage
 - V_{sh}, P_{max} and δB decrease, and so does the SNR confining power
 Particles with momentum close to P_{max}(t) escape the system
- For constant $F_{esc}(t)$ and $R_{sh}\alpha t^{2/5}$ i.e. the adiabatic self-similar solution:

Blasi, Amato, DC 2007

$$d\mathcal{E}(t) = \mathcal{F}_{esc}(t) \frac{1}{2} \rho V_{sh}^3(t) 4\pi R_{sh}(t)^2 dt$$

$$N_{esc}(p) \propto p^{-4} t^{5\nu-2} \mathcal{F}_{esc}(t)$$

$$R_{sh}(t) \propto t^{\nu}$$

$$N_{esc}(p) \propto p^{-4} t^{5\nu-2} \mathcal{F}_{esc}(t)$$

The released spectrum is the convolution over time of 3 contributions: Escape from upstream+ Leakage from downstream + Relic advected CRs

DC, Amato, Blasi, 2010a

A snapshot from a benchmark SNR

- CSM density = 0.01 part/cm⁻³
- CSM temperature = 10⁶ K
- Diffusion in the amplified magnetic field

1.000

 Chemical abundances tuned to fit the observed ones (Hörandel 2003; Blümer et al. 2009)

Open issues about SNR paradigm

What is the contribution by Type I/II SNe?
 Role of pre-SN stages (winds, hot bubbles, chemical composition...)

• What is the nature of magnetic turbulence in modified shocks?

- Are they resonant and/or non-resonant modes? (Bell 2004)
- Velocity of the scattering centres -> CR spectrum
- How does injection of heavy nuclei work?
 C,O in molecular form, Fe in grain form...

How is the diffusion around a SNR (Bohm-like or Galactic like)?
 Relevant for predicting the spectrum illuminating Molecular Clouds