Bounds on evolution histories of the early Universe from indirect dark matter searches

Riccardo Catena

Istitut für Theoretische Physik (ITP), Heidelberg

22.07.10

R. C., N. Fornengo, M. Pato, L. Pieri and A. Masiero, Phys. Rev. D 81 (2010)
M. Schelke, R. C., N. Fornengo, A. Masiero and M. Pietroni, Phys. Rev. D 74 (2006)
R. C., N. Fornengo, A. Masiero, M. Pietroni and F. Rosati, Phys. Rev. D 70 (2004)

< 回 > < 回 > < 回

Overview

- Can the early Universe expand faster than in General Relativity?
- If yes, thermal dark matter has larger annihilation cross section:

 $\Omega_{DM}h^2 \propto \frac{H_f}{\langle \sigma_{ann} V \rangle_f} \implies$ "Cosmological boost factor"

- In Scalar-Tensor theories it is possibile to realize $H/H_{GR} >> 1$
- . C., N. Fornengo, A. Masiero, M. Pietroni and F. Rosati, Phys. Rev. D 70 (2004)

Overview: theories with $H \neq H_{GR}$

$$H_{\rm GR}^2 = rac{1}{3M_p^2}
ho_{
m tot} \simeq 2.76 \, g_* rac{T^4}{M_p^2}$$

- - Kination P. Salati, Phys. Lett. B 571 (2003) 121
- Consider theories where the effective Planck mass is different from the constant M_p:
 - Scalar-Tensor theories
 R. C., N. Fornengo, A. Masiero, M. Pietroni and F. Rosati, Phys. Rev. D 70 (2004) 063519
 - Extradimensions L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690

-Can we set an upper bound for such cosmological boosts? Yes

- Main assumption: Thermal dark matter production
- Method: The Boltzmann equation

$$\dot{n} + 3Hn = -\langle \sigma_{\mathrm{ann}} v \rangle (n^2 - n_{eq}^2)$$

 $\Omega_{DM} h^2 \propto rac{H_f}{\langle \sigma_{\mathrm{ann}} v
angle_f}$

$$\left.\begin{array}{l} \Omega_{DM}h^2 \Longrightarrow \text{ from WMAP} \\ \langle \sigma_{\text{ann}} v \rangle_f \Longrightarrow \text{ bounds from indirect} \\ \text{ dark matter detection} \end{array}\right\} \Longrightarrow \text{ Constraints on } H_f$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Bounds on $\langle \sigma_{ann} v \rangle_f$ from indirect dark matter searches

- 3 Bounds on the Hubble expansion
- 4 Conclusions

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶

2 Bounds on $\langle \sigma_{ann} v \rangle_f$ from indirect dark matter searches

- 3 Bounds on the Hubble expansion
- 4 Conclusions

A (10) A (10) A (10)

2 Bounds on $\langle \sigma_{ann} v \rangle_f$ from indirect dark matter searches

4 Conclusions

A >

- The Boltzmann equation:

$$\dot{n} + 3Hn = -\langle \sigma_{\rm ann} v \rangle (n^2 - n_{eq}^2)$$

- Two rates:
- 1) Hubble rate H
- 2) Annihilation rate $\Gamma = n \langle \sigma_{ann} v \rangle$
- When $H/\Gamma > 1 \Longrightarrow$ dark matter decoupling

(日)

- From the Boltzmann equation:

$$\Omega_{DM} h^2 \propto rac{H_f}{\langle \sigma_{
m ann} v
angle_f}$$

- The ratio $H_f/\langle \sigma_{ann} v \rangle_f$ is fixed by CMB observations
 - \implies A bound on $\langle \sigma_{ann} v \rangle_f$ can constrain H_f

Charged particles:

-Antiprotons (PAMELA) -Positron fraction (PAMELA) -Electron+positron flux (FERMI,HESS)

 γ -rays: -Diffuse emission (Fermi,EGRET) -From the galactic center (HESS)

Radio photons:

-Radio observations from the galactic center R.D.Davies, D.Walsh, R.S.Booth, MNRAS 177, 319-333 (1976)

Optical depth of CMB photons (WMAP)

< 回 > < 三 > < 三 >

-s-wave annihiations

-Dark matter profile:

- 1) Via Lactea II simulation
- 2) Aquarius simulation
- 3) Cored profile with $\rho_{\rm local} \simeq 0.4 \, {\rm GeV} \, {\rm cm}^{-3}$

R. Catena and P. Ullio, arXiv:0907.0018 [astro-ph.CO]. To be published in JCAP

-Diffusion model:

F. Donato, N. Fornengo, D. Maurin and P. Salati, Phys. Rev. D 69 (2004) 063501 J. Lavalle, Q. Yuan, D. Maurin and X. J. Bi, arXiv:0709.3634 [astro-ph]

-Annihilation channels:

DM+DM ightarrow \mathbf{e}^+ + \mathbf{e}^- , au^+ + au^- , μ^+ + μ^- , W^+ + W^- , b + $ar{b}$

(日)

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Riccardo Catena (ITP)

Paris (TeVPA 2010 22/07/2010) 11 / 17

æ

Riccardo Catena (ITP)

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

- A naive bound comes from:

$$\Omega_{DM} h^2 \propto rac{H_f}{\langle \sigma_{
m ann} v
angle_f}$$

- The correct calculation (Boltzmann equation):

$$\dot{n} + 3Hn = -\langle \sigma_{\rm ann} v \rangle (n^2 - n_{eq}^2)$$

where H is a function of the temperature

- In the following:
- Parametric approach

$$\frac{H^2}{H_{\rm GR}^2} = 1 + \eta \left(\frac{T}{T_{\rm f}}\right)^{\nu} \tanh\left(\frac{T - T_{\rm re}}{T_{\rm re}}\right)$$

Bounds on H: Parametric approach

Riccardo Catena (ITP)

æ

Bounds on *H*: Parametric approach

Riccardo Catena (ITP)

æ

- If dark matter is a thermal relic, the Hubble expansion can be constrained at $\mathcal{T}\gg\mathcal{T}_{BBN}$

- Indeed, present bounds on $\langle \sigma_{ann} v \rangle_f$ can be translated in bounds on H_f
- These bounds depends on the assumed dark matter profiles and diffusion model
- However, for a 100 GeV WIMP, large departures from GR ($H/H_{\rm GR} >$ 100) are unlikely