

Search for Neutrinos from the Galactic Dark Matter Halo with IceCube

Jan-Patrick Hülß for the IceCube Collaboration III. Physikalisches Institut B

Content

Dark Matter: indirect detection

Galactic Halo: Neutrinos from the Galactic Halo

> **IceCube:** Observation of Neutrinos

Northern Sky Observation: Outer Galaxy, Analysis principle

> Galactic Center Observation: Southern Sky, Analysis principle

> > **Results:**

Limits on the annihilation cross section

Neutrinos from DM

- WIMPs (χ) annihilate in a weak interaction
- Z, H can decay into any pair of particle & anti particle
- Branching ratios depend on SUSY model
- Chose two decays:
 - low energetic v ($\chi\chi \rightarrow$ bb)
 - ($\chi\chi \rightarrow \tau\tau$ if not enough energy to produce bb)
 - high energetic v ($\chi\chi \rightarrow \mu\mu$)
 - ($\chi\chi \rightarrow$ WW if produced in matter)
- All predictions by models are in between
- Expect neutrinos with E < TeV

Fix normalization at solar circle: $\rho(8.5 \text{kpc}) = 0.3 \text{ GeV cm}^{-3}$

How to observe a Flux from the DM halo?

2 independent methods

- Observe the outer region of the Galaxy
 - DM density less model dependant
 - weak neutrino flux
 - nearly background free for IceCube (Northern hemisphere)

- Observe the GC Region
 - → stronger neutrino flux
 - Depends on halo model
 - Huge background of atmospheric muons (Southern hemisphere)

Jan-Patrick Hülß

The IceCube Detector

IceCube

1 km³ with about 5000 sensors (DOMs) 78 cable with 60 sensors

DeepCore Extension

8 cables with 60 sensors in the deep ice

Detection Principle: neutrino v produces a muon μ μ produces Cherenkov light in the ice $v + N \rightarrow \mu + X$

Tu 12.10: D. Williams, Status of the IceCube Neutrino Observatory

1 event

The IceCube Detector

IceCube

1 km³ with about 5000 sensors (DOMs) 78 cable with 60 sensors

DeepCore Extension

8 cables with 60 sensors in the deep ice

Detection Principle: neutrino v produces a muon μ μ produces Cherenkov light in the ice $\nu + N \rightarrow \mu + X$

Background: μ produced in the atmosphere

Signal from above (southern sky): v interacts in the detector light signal starts inside the detector

Outer Galaxy Observation

- IceCube 22 data from 2007
 - → point source sample, Northern Sky
- signature: large scale anisotropy
- compare the amount of events in an on- and off- source region
 - Removes systematic effects of the background simulation
 - Off-source region is not completely signal free
- on-source region:
 - All events closer than 80 deg to the GC
- off-source region:
 - same as on-source but rotated 180 deg in ra.

Systematic Uncertainties

Effect		Sys. Uncertainty
Cosmic-ray anisotropy		0.2%
Exposure		0.1%
Total Background		0.3%
Ice properties		25%
Reco. DOM Efficiency		4%
Muon propagation		3%
Bedrock uncertainty		3%
Neutrino cross section	U	2%
Exposure		1%
Total Signal Acceptance		26%

reliable background estimate due to on-/off-source method - only other large scale structures could affect this

signal simulation is the dominant source of uncertainties

modeling of the optical ice properties

Galactic Center observation

- Galactic Center is one spot in the sky
 - use on/off source method

reduce systematic uncertainties due to simulations

- stick to one zenith band
- → large off source area A_{off} reduces statistic uncertainties
- → use IceCube and Deep Core allows the identification of starting events

expected background

uncertainty

→ no DeepCore data available up to now

dedicated search with IC40

- \rightarrow data from April 2008 to May 2009
- \rightarrow first application of algorithms for DC

Identification of starting v tracks

- identification of v by starting tracks
- huge amount of atmospheric $\boldsymbol{\mu}$
- use the upstream DOMs without signal to identify these starting tracks
 - DOMs without signal could indicate a v
- Challenge:
 - → DOM spacing: 16 m vertical , 125 m horizontal
 - probability for a signal decreases rapidly with distance between DOM and track
 - in IceCube 40 isolated hits are removed
 - → reduced chance to observe hits

Typical problematic background event

This simulated muon:

- passes 3 layers of strings,
- starts in the middle of the detector,
- is a long track leaving at the bottom

→ irreducible background could be removed by energy cuts but not for DM signal below 1 TeV

GC limit for self annihilation x-section

No excess of events in the on source region in both analyses

events	IC22 outer G	IC40 GC
expected	1389	798.8 e3
observed	1367	798.8 e3
difference	22	23
limit (90% CL)	<49	<1168
$J(\psi)$ (NFW)	~2	240

- limit WIMP self annihilation x-section
 - Limits by GC analysis more restrictive
 - → but halo model dependent
 - Outer Galaxy analysis more sensitive for large WIMP masses
 - → best for large WIMP masses
 - → about halo model independent

Summary

- possible Neutrino Flux from Dark Matter in the Galactic Halo
 - depends on the extension of the standard model
 - → depends on the Dark Matter distribution
- IceCube is sensitive to this signal
 - → two complementary approaches:
 - observation of the outer galaxy: low halo model uncertainties, low background
 - observation of the GG: larger flux, sensitive to Dark Matter Density (halo model)
- no neutrino signal found
 - limits on self annihilation cross section
- observation of neutrinos from the southern hemisphere
 - identification is challenging with IceCube 40
 - full IceCube (including DeepCore) will improve the sensitivity significantly