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Fermi Gamma-Ray Space Telescope
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Can we use FGST data to constrain early star formation
and/or models of dark matter annihilation?
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The Recipe

1. Begin with dark matter minihalos in the early universe, with a dash of pristine gas.

e The gas will collapse to form the first stars.
e The first stars will be quite massive, and will likely collapse to black holes.

2. When an object forms near the center of minihalo, dark matter will be dragged into
and around the central body, creating a dark matter “spike.”

3. Evolve dark matter structures and black holes to low redshift, determining the local
distribution.

4. Calculate the expected gamma-ray flux from dark matter annihilations in spikes:

=> point sources (if they are bright enough)

=>» contribution the diffuse gamma-ray flux (if they are faint)
[See work by J. Silk. P. Gondolo, G. Bertone, A. Zentner, H. Zhao, M. Fornasa, M. Taoso etc.]
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Nomenclature

e Population |l
« Population Ill.1: ~zero metallicity (BBN abundances)

- unaffected by other astrophysical sources!

« Population Ill.2: essentially metal-free, but gas partially ionized

e Population |l

» |low metallicity relative to solar

e Population |

« |uminous, hot and young — like our Sun
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Formation of the First Stars

Population I11.1:

e 2220

* Molecular Hydrogen cooling
Minimum halo mass for star formation

1+ 2\ Tenti & Stiavelli (2
My, —coor ~ 1.54 x 10° M, ( . ) renti & Stiavelll (2009)
Predicted to be quite massive
» Theory: insufficient cooling allowed them to grow large Larson (1999)

. Simulations: also show typical masses = 100 M__ Bromm, Coppi & Larson

(1999, 2002); Abel, Bryan & Norman (2000, 2002); Nakamura & Umemura (2001); O'Shea &
Norman (2007); Yoshida et al. (2006, 2008); etc.

Assume they die by collapsing to black holes Heger & Woosley (2002)
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Dark Stars?

e In case you “fell asleep or left” Malcolm Fairbairn's talk on Monday:

e As star began to form, DM was dragged into a growing potential well

M |M
500 Mo 1000
|

e DM annihilation rate enhanced ~p? N
e Could DMA products “power” the star?

1 Sufficiently high DM density for large 100 |
annihilation rate 3

2 Annihilation products get stuck in star :
3 Dark matter heating beats H2 cooling "y

> Answer: YES!!
See Spolyar et al. (2008+)

e Dark stars have low surface temperatures, so they might have been very
large: end up as Zero Age Main Sequence stars of 500-1000 M _ or more.
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DM spikes

With or without DS phase, we expect « Baryons fall in, potential well deepens,
an enhanced DM density around the DM falls in, too...
object.

« Start with NFW profile
» Adiabatic contraction
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0 (GeV/c 1113)

DM spikes

With or without DS phase, we expect - Baryons fall in, potential well deepens,
an enhanced DM density around the DM falls in, too...
object.

« Start with NFW profile
» Adiabatic contraction

Parametrize end of Population lll.1 star

formation a la Greif & Bromm (2006):

Early

Intermediate

Late
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Remnant Distribution

» @Given ranges for redshift and minihalo mass, use VL-Il simulation to
find the distribution today of DM spikes (assuming each hosted a star)

Early 409
Intermediate 7983

Late 12416

Bertone, Zentner
& Silk (2005) 102784
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Remnant Distribution

» @Given ranges for redshift and minihalo mass, use VL-Il simulation to
find the distribution today of DM spikes (assuming each hosted a star)

Early 409
Intermediate 7983
Late 12416 || & O |
- - < 0.01 oo Maggntee,, 10.01
ertone, Zentner < Tesern  S83g, %%, |
& Silk (2005) 1027 + 84 2 o N ‘ "3::::::"--.—; 104
Zl I %e e ]
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Introduce fDS
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Signal from DM Annihilations

T"max
o ) ov
« DM annihilation rate: 1 = imj / dr Amr® ph

X T'min

« Choose models for DM mass and annihilation channels:

Model | Mass (GeV) | Final State || Model | Mass (GeV) | Final State
b100 100 bh 7100 100 TrT™
b1T 1000 bb 71T 1000 TrT™
W100 100 W+HW= | 100 100 T
WIT 1000 WWw- || plT 1000 (T

e Infact, (ov) =) (ov)y={(ov)> By and I'; = B,T
f f
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From a Single Spike

* Luminosity
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Diffuse vs. Point Source Flux

e Two ways they could show up: (FSC and EGB both Abdo et al. 2010)
e DM spikes may already show up as point sources in the FGST catalog!

e Brightest one can't be brighter than the brightest observed source (unidentified?)
— minimal distance, DminPS

e |f a source is far enough away [dim enough], FGST won't be able to pick it out as
a point source - maximal distance for point sources, DmaxPS

=» How many point sources are there? Does the number predicted by VL2 agree
with the number of unassociated FGST sources? What can we learn about the
number of these objects that formed in the early universe?

e |f spikes are dim enough, the won't be identifiable as point sources, and would
contribute to the diffuse EGB.

=» Does the expected diffuse flux from all non-PS spikes overproduce the FGST-
measured EGB?
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Point Sources

S

min

(kpc)

100 GeV
1 TeV

DminPS: minimum distance at
which a PS can be located so that
it's not brighter than the brightest

FGST point source

1000 —
0.01+

100 F
Logm(MBH/M@)

DFS, (kpo)

DmaxPS: maximal distance at
which a PS will likely be bright
enough to be identified by FGST

10 =
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Number of Point Sources

« FGST: 1451 sources, 630 not associated with other objects

368 unassociated with |b|>10°

b100 blT
mpy /Mg Early Int. Late Early Int. Late
10 195 (70) 1117 (649) 557 (387) ~ 2 (~2) 21 (17) 14 (11)
10? 304 (151) 3247 (2263) 2935 (2186) 147 (45) 586 (372) 281 (215)
103 380 (213) 5715 (4283) 6754 (5305) | 284 (135) 2788 (1895) 2340 (1708)
10* 381 (217) 7237 (5548) 10608 (8486) | 372 (207) 5213 (3870) 5866 (4575)
10° 158 (128) 5918 (4831) 10946 (8946) | 392 (224) 7069 (5402) 9998 (7980)
1100 plT
mpr /M Early Int. Late Early Int. Late
10 <1(<1) ~2(~2) ~1(~1) | €l1lxl <11 < 1(< 1)
102 ~ 5 (~4) 42 (34) 26 (22) <1(<1) 1(~1) ~1(£1)
10° 195 (69) 1132 (658) 578 (400) ~ 3 (~2) 8 (23) 18 (15)
10 305 (152) 3278 (2288) 2987 (2229) 172 (56) 846 (493) 390 (287)
10° 380 (214) 5752 (4314) 6836 (5374) | 294 (143) 3013 (2074) 2629 (1939)
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Number of Point Sources

« FGST: 1451 sources, 630 not associated with other objects

368 unassociated with |b|>10°
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Constraining f_

« With diffuse flux (“Diffuse Constraint”):

[(I)-i(fDS) = fps X ®;(fps = 1)]

Require that diffuse flux does not exceed the EGB by more than 30.

« With point source population (“Point Source Constraint”):

G"}p(ﬂ; Ips) = fps X Ng(R, fps = 1)\

DPS

/ s / dQ N,,(R, fs) < 1
\ 0 allsky )

Require an expectation of < 1 spike within DminPS of our solar system.
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Maximum fg

Maximum /g

Excluding inner 5 kpc!!

diffuse = open
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Conclusions

We have placed conservative limits on the fraction of minihalos in the early universe that
could have hosted formation of Population lll.1 stars (robust w.r.t. uncertainties about
inner halo dynamics).

e Low Luminosity Spikes:
- most contribute to diffuse flux, but not enough for a Diffuse Constraint
- close ones not bright enough for a Point Source Constraint

e |ncreasing Luminosity:
- Diffuse Constraint kicks in

- distance at which spikes can be identified as point sources increases, so some spikes
in the distribution are bright (close) enough

e High Luminosity:
- most spikes in our Galactic halo are bright point sources (Point Source Constraint)
- few are so far away that they contribute to the diffuse flux (no Diffuse Constraint)

e |f Population Ill.1 star formation is short, limits are weak.

Fermi may have already seen some of these things!
e Probably not more than 20-60 according to Buckley & Hooper (2010)
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Next?

Convert the constraint on the fraction of star-forming minihalos
to a limit on the Population Ill.1 Star Formation Rate.

Check agreement with electron and positron data from
PAMELA and Fermi.

Could upcoming neutrino experiments be sensitive to these
scenarios (diffuse flux and/or point sources)?
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Photons are not the only DMA products.
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Positrons

« DM annihilations in a nearby spike could be causing PAMELA positron
excess. Hooper, Stebbins & Zurek (2009)

Bringmann, Lavalle & Salati (2009
104 | | T )
my, = 1TeV (100% to ptp™)
10% PAMELA (fit) E
- Fermi (excluded)
1038 | == EGRET (constraint) — ~
o
o
7]
T Z
lL 1037 | E
H o
=
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1036 SR 3
I'Milky Way Lj‘
1035 o
1 1 | | | | |
100 150200 300 500 1000 2000
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Positrons: Is the distance compatible?

|

100 GeV
—_— 1 TeV

i (kpe)

—
S
min

0.01+

Loglo(MBH/M@)

DmaxPS: The spike would be
bright enough to have been
identified as a point source, since
it must be within a few kpc of our
solar system. This spike would
probably be in the FGST catalog!

DminPS: For 1 TeV WIMPs
annihilating to muons in the spike
around a 10,000 solar mass black

hole, the spike can't be closer
than a few hundred parsecs.

1000

100+

(kpc)

10}

S
max
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Neutrino Flux from DM Spikes

* Neutrinos: not brighter than Super-Kamiokande point source flux limit
[note: not full-sky].
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