Neutrinos and DM (Galactic) Deep Core prospects

ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512

Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick

Basic Result

• If the electron excess seen by Fermi is DUE TO DM annihilation going leptonic final states $\mu^+\mu^-, \tau^+\tau^-$, etc...

- 5+5: ICECUBE will see a 5 σ excess of neutrinos from toward the Galactic center in 5 years
- If we DON'T see any excess neutrinos
 - 2+5: ICECUBE can constrain Leptonic DM as an explanation of Pamela at 2 σ in 5 years
- Even better with some branching fraction directly to neutrinos

Outline

- DM Introduction
- IceCube
 - neutrino as a new handle
 - Galactic Center

Dark Matter Good news

Don't Need to invent new particles which exist for other reasons

Weakly Interacting Massive Particles WIMPs

- e.g. the neutralino (LSP SUSY)
- Automatically Get the Right Relic Density

Looking For DM

LHC-Making DM

Direct Detection Experiments

A WIMP in the Galaxy travels through our detectors. It hits a nucleus, and deposits a tiny amount of energy. The nucleus recoils, and we detect this energy deposit.

> WIMP/NUCLEUS SCATTERING

Indirect Detection WIMP Annihilation

WIMP Annihilation

Typical final states include heavy fermions, gauge or Higgs Bosons

I. Fragment / Decay

Annihilation products decay and/ or fragment into combinations of electrons, protons, deuterium, neutrinos and gamma-rays

2. Synchrotron and Inverse Compton Relativistic electrons up-scatter starlight/CMB to MeV-GeV

energies, and emit synchrotron photons via interactions with magnetic fields

Many anomalous signals: WIMP dark matter detection? how can we be sure?

- The DAMA annual modulation
 - (direct detection experiment in Gran Sasso tunnel)
- CoGeNT....CDMS.... Crest.....
- The HEAT, Fermi, PAMELA positron excess – (is it WIMP annihilation?)
- INTEGRAL 511 KeV line
- WMAP/Fermi Haze

HAS DARK MATTER BEEN DISCOVERED?

Cosmic Rays

produced from SuperNova, Pulsars, (DM), etc

PAMELA Excess

Fermi Excess

Too many electrons and positrons versus too many positrons with PAMELA

Explanations

• Astrophysical (S. Profumo)

- Super Nova and Pulsars
- GALPROP is wrong
 - Different diffusion coefficient etc.
- DM Annihilation Provides the source

DM properties

- Boosted Signal
 - I. Enhanced Annihilation cross-section over the relic annihilation cross-section
 - Sommerfeld Enhancement
 - quantum mechanical analog of gravitational focusing
 - Breit-Wigner enhancement
 - Resonance effect

New Indirect Detection Results! (When it rains it pours) IceCube AMS neutrino positrons Runningi 2011 Deployment Fermi Running Looking for **Dark matter** annihilation

IceCube + Deep Core

String Space

IceCube 125m

DeepCore 72m

Bead Spacing

IceCube 17m

DeepCore 7m

Look for signal from the galactic Center

Use IceCube as a Veto

Poor angular resolution 30-50 degrees I-I0TeV (unclear at lower energies) take resolution to be I/2 of the Sky (conservative)

PAMELA positron excess

May also be an indication that DM species **decay** in the MW.

$$\Gamma_{\rm ann} \equiv \langle \sigma v \rangle \times \frac{\rho_{\chi}^2}{m_{\chi}^2} \Rightarrow \Gamma_{\rm ann} \equiv \Gamma_{\rm dec} \times \frac{\rho_{\chi}}{m_{\chi}}$$

4) Decaying dark matter

- Decaying DM species still pass the astrophysical tests since $\Gamma_{\rm ann} \propto \rho_{\chi}$.
- The lifetime needs to be fine-tuned though.
- Why is it so large dimension 5 or 6 operators ?
- FERMI should be able to detect the ICS WIMP signal.

P. Salati

P. Meade, M. Papucci, A. Strumia & T. Volansky, arXiv:0905.0480

 $DM \rightarrow 4\mu$, Einasto profile

 $DM \rightarrow \tau^+ \tau^-$, Einasto profile

 $DM \rightarrow 4\mu$, isothermal profile

 $DM \rightarrow \mu^+ \mu^-$, isothermal profile

Decaying Dark Matter

IceCube Future Constraints

IceCube can do roughly an order of magnitude better job!

Dwarf Galaxies

- Dark Matter Dominated
- Can't "fake a Signal
- Interesting point sources

With Pearl Sandick

Conclusion

Opportunity to discover or strong constrain DM

- Due to DM annihilation
- Also an opportunity to place the strongest constraints on decaying DM
- Finally, dwarf galaxies can be very helpful in constraining the scenario if there is a sizable branching fraction directly to neutrinos