Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

David Tran Technical University of Munich

In collaboration with Laura Covi, Michael Grefe, Alejandro Ibarra and Christoph Weniger

> TeV Particle Astrophysics 2010, Institut d'Astrophysique de Paris

> > July 22, 2010

David Tran Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

1 Unstable Dark Matter and Indirect Detection

3 Gamma Rays from Dark Matter Decay

David Tran Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

Dark Matter Stability - An Assumption

• We do not know whether the dark matter particles are **perfectly** stable – from the presence of dark matter in the Universe today we can only infer stability on a cosmological timescale,

$$\tau_{\rm DM} > \tau_{\rm universe} \sim 4 \times 10^{17} {\rm \ s}$$

Established Dark Matter Properties

Dark matter clearly exists and is

- massive
- electrically neutral and colorless
- cold
- non-baryonic
- stable very long-lived

Some Examples of Unstable Dark Matter

- Gravitino dark matter with *R*-parity violation
 [Takayama, Yamaguchi '00], [Buchmüller, Covi, Hamaguchi, Ibarra, Yanagida '07]
 [Ibarra, DT '08], [Ishiwata, Matsumoto, Moroi '08]
 [Chen, Ji, Mohapatra, Nussinov, Zhang '08, '09]
 [Buchmüller, Ibarra, Shindou, Takayama, DT '09], [Bomark, Lola, Osland, Raklev '10]
- Hidden sector gauge bosons/gauginos [Ibarra, Ringwald, Weniger '08], [Ibarra, Ringwald, DT, Weniger '09] [Chen, Takahashi, Yanagida '08, '09]
- Right-handed sneutrinos in models with Dirac masses [Pospelov, Trott '08]
- Hidden sector fermions

[Hamaguchi, Shirai, Yanagida '08]

[Arvanitaki, Dimopoulos, Dubovsky, Graham, Harnik, Rajendran '08, '09]

Hidden SU(2) vectors

[Arina, Hambye, Ibarra, Weniger '09]

• Bound states of strongly interacting particles

[Hamaguchi, Nakamura, Shirai, Yanagida '08]

[Nardi, Sannino, Strumia '08]

向下 イヨト イヨト

Approaches to Non-Gravitational Dark Matter Detection

- $\bullet~$ Collider searches: SM SM $\rightarrow~$ DM X
- \bullet Direct detection: DM nucleus \rightarrow DM nucleus
- Indirect detection: DM DM \rightarrow SM SM, DM \rightarrow SM SM

A Wealth of New Data on Charged Cosmic Rays

• Several new and unexpected results from PAMELA, Fermi LAT, ATIC, ... over the last years

A possible scale for the DM mass and lifetime?

[Ibarra, DT, Weniger '09]

- The unidentified source of primary electrons/positrons must actually exist, be local and capable of producing highly energetic leptons → dark matter?
- The decay of "leptophilic" DM is a viable interpretation of the cosmic lepton anomalies (at least on a basic level)
- The PAMELA and Fermi lepton anomalies then suggest a scale for the DM mass and lifetime: $m_{\rm DM} \sim ~$ a few TeV, $\tau_{\rm DM} \sim 10^{26}$ sec.
- Even though this lifetime far exceeds the age of the Universe, it is in the testable range! → Look for ways to constrain or exclude decaying DM interpretations

The Source of Cosmic Rays from DM Decay

[Moore et al. '05]

- Linear dependence on DM density \rightarrow important qualitative differences:
 - No signal enhancement from dark matter substructures (boost factors) → regions of high DM density not necessarily the best targets for indirect searches
 - Indirect signatures of DM decay are less sensitive to uncertainties in the DM distribution
 - Less directional dependence of signals than for DM annihilation
- As a result, it is more difficult to exclude decaying DM interpretations

Unstable Dark Matter and Indirect Detection

2 Neutrinos from Dark Matter Decay

3 Gamma Rays from Dark Matter Decay

David Tran Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

[Covi, Grefe, Ibarra, DT '10]

- Neutrinos can be generated directly in DM decays, e.g. $DM \rightarrow \ell^+ \ell^- \nu$, or in the subsequent decay of leptons / hadrons
- Flavor information is essentially erased due to neutrino propagation over Galactic scales
- Large atmospheric backgrounds and low signal fluxes make detection of a signal very challenging
- The best significance, $\sigma=S/\sqrt{B},$ is obtained for a full-sky observation

[Covi, Grefe, Ibarra, DT '10]

- Neutrino energies in the \sim GeV TeV range \rightarrow regard deep-inelastic scattering of neutrinos with nucleons
- Calculate rates of neutrino-induced muon events to derive constraints on exotic neutrino flux
- Interesting range of parameters remains unconstrained by current experiments (SuperKamiokande)

[Covi, Grefe, Ibarra, DT '10]

- Above: exclusion limits for IceCube / IceCube + DeepCore from non-observation of an excess in the rate of through-going muons
- Near-future experiments of km³ dimensions should be able to constrain leptonic DM decay at the level associated with the lepton anomalies

[Covi, Grefe, Ibarra, DT '10]

- The potential to constrain dark matter interpretations is even stronger when making use of spectral information: a signal could show up with high significance in several energy bins
- Identification of specific decay modes is difficult and requires complementary information: antimatter, gamma rays

Unstable Dark Matter and Indirect Detection

2 Neutrinos from Dark Matter Decay

3 Gamma Rays from Dark Matter Decay

4 Conclusions

David Tran Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

4 3 k

-

Gamma Rays from Dark Matter Decay

- For dark matter lifetimes $\mathcal{O}(10^{26})$ sec one generally gets an $\mathcal{O}(0.1-1)$ contribution to the "extragalactic background" from prompt radiation and inverse Compton
- This can yield a deviation from the expected power-law behavior in the background radiation, as shown below for $\psi_{\text{DM}} \rightarrow \ell^{\pm} \ell^{\mp} \nu$, $\psi_{\text{DM}} \rightarrow W^{\pm} \mu^{\mp}$. However, no deviation from a power law observed by Fermi [Abdo et al. '10]!

[Ibarra, DT, Weniger '09]

 In addition, two-body dark matter decays could give rise to gamma-ray lines (radiatively?)

Gamma Rays from Dark Matter Decay

- We are located far off-center in the Galactic dark matter halo
 → anisotropic dark matter contribution to the background of
 "extragalactic" gamma rays due to prompt radiation from decay of
 DM particles
- This contribution is distinguishable from the extragalactic one by its angular dependence: substantial DM-induced prompt signal at high Galactic latitudes

[Ibarra, DT, Weniger '09]

• Above: signal-to-background ratio of DM signal. Left: prompt radiation at 100 GeV, right: inverse Compton at 10 GeV

• Define the anisotropy A as the relative difference in flux from Galactic center (GC) and Galactic anticenter (GAC) hemispheres:

$$A_{b_{\min}:b_{\max}} = \frac{\bar{J}_{\mathsf{GC}} - \bar{J}_{\mathsf{GAC}}}{\bar{J}_{\mathsf{GC}} + \bar{J}_{\mathsf{GAC}}}$$

1 [deg]

• Define the anisotropy A as the relative difference in flux from Galactic center (GC) and Galactic anticenter (GAC) hemispheres:

$$A_{b_{\min}:b_{\max}} = \frac{\bar{J}_{\mathsf{GC}} - \bar{J}_{\mathsf{GAC}}}{\bar{J}_{\mathsf{GC}} + \bar{J}_{\mathsf{GAC}}}$$

1 [deg]

• Define the anisotropy A as the relative difference in flux from Galactic center (GC) and Galactic anticenter (GAC) hemispheres:

$$A_{b_{\min}:b_{\max}} = \frac{\bar{J}_{\mathsf{GC}} - \bar{J}_{\mathsf{GAC}}}{\bar{J}_{\mathsf{GC}} + \bar{J}_{\mathsf{GAC}}}$$

1 [deg]

• Define the anisotropy A as the relative difference in flux from Galactic center (GC) and Galactic anticenter (GAC) hemispheres:

$$A_{b_{\min}:b_{\max}} = \frac{\bar{J}_{\mathsf{GC}} - \bar{J}_{\mathsf{GAC}}}{\bar{J}_{\mathsf{GC}} + \bar{J}_{\mathsf{GAC}}}$$

(joing)

Gamma Rays from Dark Matter Decay

• The anisotropies between Galactic center and anticenter hemispheres can be substantial and can be probed by Fermi LAT observations. Example below: $\phi_{\rm DM} \rightarrow \mu^+ \mu^-$

[Ibarra, DT, Weniger '09]

- Similarly, sizable center-anticenter anisotropies are predicted for **all** of the decay modes that can reproduce the PAMELA/Fermi electron excesses
- No anisotropy expected between northern and southern hemisphere
- NB: Not a "smoking gun," but an important test!

The Diffuse Spectrum as Measured by Fermi LAT

• Results from Fermi LAT on isotropic (?) diffuse gamma-ray emission [Abdo et al. '10]

David Tran

Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

The Diffuse Spectrum as Measured by Fermi LAT

- We make use of the results from Fermi LAT on hemispheric fluxes:
- Center-anticenter anisotropy: around 10% (larger than expected), **but** without discernible energy dependence

• North-south anisotropy: close to zero

1 Unstable Dark Matter and Indirect Detection

2 Neutrinos from Dark Matter Decay

3 Gamma Rays from Dark Matter Decay

David Tran Gamma-Ray and Neutrino Signatures of Unstable Dark Matter

→ 3 → 4 3

Conclusions

- Unstable dark matter is an interesting scenario with some important differences in indirect detection strategies with respect to dark matter annihilation.
- Next-generation neutrino telescopes can yield important constraints on leptonic dark matter decay modes.
- Prompt gamma-radiation from DM decay exhibits a dipole-like anisotropy at high Galactic latitudes. If decaying DM interpretation of lepton anomalies is correct, a sizable anisotropy in the overall flux is predicted for *a priori* foregrounds.
- Present data indicates an anisotropy larger than expected from astrophysics, but with no discernible energy dependence. However, large uncertainties remain.

Conclusions

- Unstable dark matter is an interesting scenario with some important differences in indirect detection strategies with respect to dark matter annihilation.
- Next-generation neutrino telescopes can yield important constraints on leptonic dark matter decay modes.
- Prompt gamma-radiation from DM decay exhibits a dipole-like anisotropy at high Galactic latitudes. If decaying DM interpretation of lepton anomalies is correct, a sizable anisotropy in the overall flux is predicted for *a priori* foregrounds.
- Present data indicates an anisotropy larger than expected from astrophysics, but with no discernible energy dependence. However, large uncertainties remain.

Thank you for your attention!