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Dark Matter Halos

• Halos are  “building 
blocks”  of Nonlinear 
structure 

• Virialized “Halos” 
have masses and radii...

Mvir =
4π

3
∆〈ρ〉 R3

vir

∆ ∼ 200



Dark Matter Halos
• Halos have 
spherically-averaged 
density structures...

• The concentration 
parameter “c” specifies 
how centrally 
concentrated the dark 
matter is at fixed 
overall, Mvir
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c
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Rvir
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Subhalos
• “Subhalos” are the 
self-bound, smaller 
clumps the Lie 
within the 
“Virialized” regions 
of larger “Halos”

• Subhalos are, to 
rough approximation, 
much like smaller, 
denser halos

Subhalos
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Adiabatic Contraction
r M(<r) is an adiabatic invariant 

for circular orbits

Steigman et al. 1978; 
Zel’Dovich et al. 1980; 
Blumenthal et al. 1986



Adiabatic Contraction
Use r × M(<〈r〉) as an invariant 
to account for noncircular orbits

Gnedin et al. 2005

Fit, 〈r〉= Arvir (r/rvir)w 
to particle orbits



Halos with Galaxies

galaxy formation
non-radiative Gas

dissipationless n-body

Modify Halo structure, 
account for contraction, 
compute lensing spectra

Halos in baryonic 
simulations look like 

NFW halos with 
modified concentrations

Rudd et al. 2008

Also: Guillet et al. 
2009; Casarini et al. 

2010



Halos with Galaxies
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F. 6.— Mean concentration of radial distributions of main mass components as a function of halo mass. Hashed regions contain 68% of halos in a given mass
bin. Scatter in the concentration relation for the DMO simulation is comparable to that in the DMG NR simulation and is omitted for clarity. Error bars correspond
to the estimated error on the mean concentration in each bin. Left panel: the mean NFW concentration fit to the total (i.e., DM+gas+stars) mass distribution for
all three of our simulations as indicated at the bottom of the panel. Center panel: the mean NFW concentration fit to the dark matter distribution in all three
simulations. Right panel: the mean Burkert concentration fit to the gas density profiles in the DMG NR simulation.

contribution is given by

P1Hi j (k) =
1

ρiρ j

∫

dmm2 fi(m) f j(m)
dn

dm
λi(k;m)λ j(k;m), (5)

where ρi is the mean density in the ith matter component,
fi(m) is the average fraction of mass in halos of total mass
m residing in the ith component, dn/dm is the mass function
of halos, and λi(k;m) is the Fourier transform of the mean
density profile of the ith component in halos of total mass m.
For example, the profiles of dark matter halos are often mod-
eled by NFW profiles, in which case, λi(k;m) is the Fourier
transform of the NFW density profile (e.g., given by Scocci-
marro et al. 2001) with a concentration parameter set by some
relation (e.g., Bullock et al. 2001). The two-halo contribution
to P(k) is

P2Hi j (k) =
1

ρiρ j
Plin(k)Bi(k)Bj(k), (6)

where

Bi(k) ≡

∫

dmmfi(m)
dn

dm
λi(k;m)bh(m), (7)

Plin(k) is the linear matter power spectrum, and bh(m) is the
mass-dependent halo bias.
Our primary aim in applying the halo model is to study the

qualitative features of the spectra from our simulations rather
than to provide a precise, quantitative description. There-
fore, we adopt the fitting forms for the mass function and lin-
ear bias of dark matter halos provided by Sheth & Tormen
(1999), rather than any of several updated bias prescriptions
(e.g., Jenkins et al. 2001; Seljak &Warren 2004; Tinker et al.
2006, see Cooray & Sheth 2002 and Zentner 2006 recent re-
views). This choice guarantees that the two normalization re-
lations

1

ρ

∫

dm
dn

dm
= 1 (8)

and
∫

dm
dn

dm

(

m

ρ

)

bh(m) = 1 (9)

are satisfied identically without making any further, and of-
ten arbitrary, choices about how these relations should be
enforced. As halos have a finite extent set by their virial
radii, the integrals in Eq. (7) should not extend over all mass

but should be limited to halos with virial radii smaller than
r ∼ k−1. This effect is known as halo exclusion. Though
more complex and accurate implementations of halo exclu-
sion exist (e.g., Tinker et al. 2006), we use the model for
halo exclusion introduced by Zheng (2004). Briefly, we set
the upper bounds on the integrals in Eq. (6) to the halo mass
that corresponds to a virial radius of rmax = 2πk

−1. Previous
studies have found this prescription to be useful for practical
applications (e.g., Zheng 2004; Zehavi et al. 2004).
The last ingredients necessary to build a halo model of the

matter power spectrum are specifications of the density pro-
files that characterize the distribution of each matter compo-
nent within halos. We treat each of the cases of pure dark
matter, dark matter with non-radiative gas, and dark matter
with gas cooling and star formation slightly differently, with
prescriptions motivated by our set of simulations.
We model the dark matter halos in both the N-body and

non-radiative cases with the NFW density profile [Eq. (3)].
As in § 3.2.2, the concentrations of halos are different in each
case, and we include this effect in our implementation of the
halo model. In our modeling, it is necessary to extrapolate be-
yond the range of concentrations probed directly by our sim-
ulations. Partly motivated by the fact that we aim to represent
the features of our simulated spectra qualitatively, we adopt a
particular form of the analytic model for halo concentrations
introduced in Bullock et al. (2001). Similar to other authors
(e.g., Dolag et al. 2004; Kuhlen et al. 2005; Wechsler et al.
2006; Macciò et al. 2007), we find that the relationship be-
tween concentration and mass in our simulations has a smaller
normalization and a slightly shallower slope than that of the
Bullock et al. (2001) model in its original form. In the Bul-
lock et al. (2001) model, the parameter F controls the slope of
the concentration-mass relation while K is an overall normal-
ization. The original work of Bullock et al. (2001) advocates
values of F = 10−2 and K = 4.0. We find that the mean con-
centration as a function of mass in the DMO simulation is well
described by the Bullock et al. (2001) model with parameters
F = 10−5 and K = 1.7. We stress that these parameters are
not the result of a formal fitting procedure and defer further
exploration of the concentration-mass relation to future work.
The halos in our DMG NR simulation exhibit somewhat

higher concentrations than those in the DMO simulation. Over
the mass range measured in the simulation, we use the mea-

• Modified Halo Concentration Relation 
Relative to the Standard N-Body Result

Rudd et al. 2008
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Figure 12. We test adiabatic contraction models by comparing the predicted mean DM density profiles, in average virial units of the
matched DMONLY haloes, for the simulations PrimC NFB (left), ZC WFB (middle) and ZC SFB (right) respectively. Also shown are
the mean DMONLY profiles (which have been reduced by (1− funiv

b ) for comparison). Overlaid are the predictions from the adiabatic
contraction models of B86 (triple-dot-dashed), G04 using their default parameter values (scaled to our definition of the virial radius)
(dashed), and G04 with our best-fit parameter values (solid) as determined separately for each model, mass range, and redshift in Fig. 11
along with the goodness-of-fit measure σfit. Additionally, in the top legend we give the mean virial mass of the haloes, Mvir, the best-fit
NFW concentration, cvir, and inner profile slope, β. The top (bottom) row shows results for haloes at z = 2 (z = 0). No one parameter
combination can reproduce the range of DM haloes, indicating that the slowly cooling gas picture, on which adiabatic contraction models
are based, is not sufficient to model the behaviour of the DM in a live simulation. In fact, ignoring adiabatic contraction altogether gives
the best results for r > 0.1Rvir.

in Fig. 1, when comparing central and global baryon frac-
tions, our simulations with strong feedback (ZC WFB AGN
and ZC SFB) reduce the baryon fraction fb, in comparison
with PrimC NFB (no feedback), by factors of 2-3 for Galaxy
haloes at z = 2. In Group and Clusters the AGN can remove
nearly half of the baryons from the inner region of the halo,
at z = 0.

By comparing with observed stellar fractions in low
redshift Groups and Clusters of galaxies (Fig. 2) we found
that the simulations with a high baryon fraction (Fig. 1)
also predict stellar fractions significantly larger than ob-
served. The simulation with inefficient gas cooling and stel-
lar feedback, PrimC WFB, and the strong feedback mod-
els, ZC WFB AGN and ZC SFB, are broadly in agreement
with the observed stellar fractions in z = 0 objects of mass
Mvir ≈ 1014 h−1M". However, observed maximum star for-
mation efficiencies of order 10% - 20% are only reproduced
by the inclusion of AGN feedback.

However, these same strong feedback simulations are in
disagreement with the constraints inferred from combined
gravitational lensing and stellar dynamics analyses of the
inner total mass density profile of massive, early-type galax-

ies (Fig. 3). In this case the efficient feedback prevents the
steepening of the density profile that is necessary to repro-
duce the observed isothermal profiles. Instead, the simula-
tions with high baryon fractions are in closer agreement. A
more detailed comparison between the observations and sim-
ulations is warranted, especially with regards to the biasing
of lensing observations to steeper density profiles.

An enhanced baryon fraction in the inner halo is ex-
pected to contract the DM distribution, as a response to the
deeper potential well of the system. This effect was clearly
seen, from Dwarf Galaxy to Cluster scales and at both low
(z = 0) and high (z = 2) redshifts, and is summarised
in Fig. 7, where haloes with larger central baryon frac-
tions develop steeper central profiles (especially the Galaxy

haloes at high redshift). To quantify the contraction effect,
we fit NFW profiles and compared them to a simulation
with no baryons. Variations in the concentration are typ-
ically around 20 per cent or less, although the concentra-
tion of high-redshift dwarf galaxy haloes can be as much
as 50 per cent higher when feedback effects are ignored.
Strong feedback produces a mild decrease in the concentra-
tion of a halo through the removal of a significant amount

c© 2008 RAS, MNRAS 000, 1–19
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Contraction Model 
Residuals

Wang et al. 2010

Similar:  Gustafsson+06; Pedrosa+09; Tissera+10; Duffy+10



Is there 
evidence for 
contraction?



Yes?
8 Schulz et al.

Figure 7. All curves and points are defined in the same con-
vention as in the bottom panel of Fig. 6, with the addition of
a dashed line showing the predictions including AC. The non-
AC NFW model has been divided out (solid line at 1) so as to
present the results on a linear scale. The (top, middle, bottom)
panel shows the (brightest, intermediate, faintest) lens sample.

the baryon fraction is given by the stellar mass divided by
the best-fitting dark matter halo mass. This assumption is
robust for the fainter bins but may begin to break down for
the brightest bin, for which the mass approaches the group
scale. We also assume the baryons ultimately arrange them-
selves into a Sérsic profile with n = 4, i.e. a de Vaucouleurs
profile, with scale radius RdeV converted as in the appendix
of Padmanabhan et al. (2004).

It is remarkable that in all three luminosity bins, the
model NFW profile with adiabatic contraction agrees with
the inferred contribution of dark matter to the total dynam-
ical mass. This AC model leads to enhancements of the dark
matter contribution to the dynamical mass that are approx-
imately factors of 4, 3.5, and 2 for the faint, middle, and
bright samples respectively. The disagreement of the data
with the extrapolated pure NFW profile (i.e., without AC)
is significant at the 3.5σ, 4σ, and 2.5σ level, respectively.
The apparent agreement between the total dynamical mass
and the Blumenthal et al. (1986) model of AC is a coinci-

dence; for this to be meaningful, none of the mass could be
in stars.

3.4 Potential systematic errors

In this section, we discuss a number of systematic uncer-
tainties present in this measurement that make the very
close agreement between the AC model and the measure-
ment mildly surprising.

3.4.1 Initial mass function

The most significant concern for potential systematic er-
ror lies in the determination of the stellar mass. The stellar
masses are computed assuming a Kroupa Initial Mass Func-
tion (IMF, Kroupa 2001), which is calibrated by measuring
the mass function of stars in the solar neighborhood. While
it is expected that some level of churning will bring stars
from orbits in all parts of the galaxy close to the solar neigh-
borhood, the degree of churning is very uncertain. More im-
portantly, galaxies of different ages and types have different
metallicities, and the shape of the IMF may well depend on
metallicity. In Kauffmann et al. (2003), the sensitivity of the
stellar masses to the choice of IMF was investigated, and it
was shown that assuming a Salpeter (Salpeter 1955) IMF
with a lower mass cutoff at 0.1M! systematically increased
the stellar masses by approximately a factor of 2. However,
the amount of increase in the stellar masses will quantita-
tively depend on how the low mass end of the (divergent)
Salpeter IMF is regularized. It is interesting to contemplate
that aside from the question of AC, this measurement of the
dynamical mass can be thought of as a constraint on the
IMF, in the sense that the stellar mass cannot exceed the
total dynamical mass.

To fully explain the observed dynamical masses with no
adiabatic contraction of the dark matter, the stellar masses
would have to increase by a factor of 1.9, 2.3 and 2.2 for the
bright, middle and faint samples. However, Cappellari et al.
(2006) present a challenge to this alternative explanation.
They use detailed integral field spectroscopy observations
to infer dynamical masses within the effective radius for 25
nearby E/S0 galaxies, and compare them with the predicted
stellar masses from stellar synthesis models. They find that
for some of the galaxies, the predicted stellar masses with a
Salpeter IMF exceed the dynamical masses, which suggests
that if we require the same IMF for each galaxy, then the
Salpeter IMF is too bottom-heavy. In contrast, the Kroupa
IMF gives stellar masses that are 30 per cent lower than with
the Salpeter IMF (for their choice of cutoff mass), causing
all the stellar masses to be less than or equal to the inferred
dynamical masses. Thus, the conclusion that the IMF is very
bottom-heavy (instead of accepting the AC hypothesis) may
be difficult to reconcile with these IFU observations of ellip-
tical and S0 galaxies.

3.4.2 Other stellar mass uncertainties

There are other systematic effects in the stellar mass es-
timates that are expected to be subdominant to the IMF
uncertainties. For example, the effects of aperture bias (the
fact that the M∗/L are derived from the region of the galaxy

c© 0000 RAS, MNRAS 000, 000–000

Dark matter contribution 
to mass based on velocity 
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Also: Gnedin et al. 2006; Sand et al. 2008; Simon et al. 
2008; Trachternach et al. 2008; de Blok et al. 2010...
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Figure 7. Comparison between the observed Vopt/V200–Vopt relation from
this paper (shaded regions correspond to 2σ uncertainties) and the values
of observed (open symbols) and simulated (solid symbols) galaxies. The
observed galaxies are M31 (Klypin et al. 2002, K02, right star) and the MW
(Klypin et al. 2002, K02, left star; Smith et al. 2007, S07, white square,
with 90 per cent CL error bars, for clarity Vopt is shifted by −0.01 dex;
Xue et al. 2008; white diamond, with 2σ error bars). The galaxies from
cosmological hydrodynamical simulations are: Abadi et al. (2003), A03,
green pentagon; Governato et al. (2007), G07, cyan triangles; Naab et al.
(2007), N07, red circles; Tissera et al. (2009), T09, magenta diamonds and
Piontek & Steinmetz (2009), blue squares. See text for further details.

Table 4. Parameters of double power-law fitting formula
(equation 3) to the y = Vopt/V200 versus x = Vopt relations
in Fig. 7.

α β x0 y0 γ

Early-types: range log10 Vopt = 169–470 km s−1

Mean 0.009 −1.156 316.4 1.078 6.993
+2σ 0.009 −1.214 316.4 1.326 6.993
−2σ 0.009 −1.098 316.4 0.876 6.993

Late-types: range log10 Vopt = 91–265 km s−1

Mean 0.407 −0.186 180.1 1.099 3.559
+2σ 0.348 −0.186 180.1 1.321 3.559
−2σ 0.585 −0.186 180.1 0.886 3.559

further study, it would imply that the MW and M31 do not live in
typical dark matter haloes for their optical rotation velocity. This
would also imply that there is substantial scatter in the Vopt/V200

ratio. Scatter in Vopt/V200 is expected. For example, the analytic
models of Dutton et al. (2007), which are calibrated against the
TF and size–luminosity relations predict a 1σ scatter of "0.05
dex in this ratio. However, reconciling Vopt/V200 " 1.6 with our
measurement of Vopt/V200 " 1.1 requires a high sigma outlier. If
we require the MW and M31 to be only slightly atypical, a larger
scatter would be needed, of at least 0.1 dex. However, a large scatter
in Vopt/V200 may be difficult to reconcile with the small scatter
("0.05 dex in velocity) in the observed (Vopt–Mstar) TF relation
(Courteau et al. 2007; P07).

If the MW and M31 have atypical Vopt/V200, the left-hand panel
of Fig. 6 shows that the MW and M31 also have atypical stellar
masses for their halo velocities, with the stellar masses being higher
than average. In terms of the Vopt–Mstar TF relation, the MW and
M31 are also atypical, being offset to high velocities by more than
1σ (in terms of the intrinsic scatter). The fact that the MW does
not fall on the TF relation (including the I-band luminosity, stellar
mass and baryonic mass variants) has been noted previously (Flynn
et al. 2006; Hammer et al. 2007). Hammer et al. (2007) found that
M31 does fall on the TF relation. This apparent conflict with our
result is due to the different velocity definitions used. Hammer et al.
(2007) adopt Vflat = 226 km s−1 for M31, whereas we adopt V2.2 =
260 km s−1 (based on the rotation curve data compiled by Widrow
et al. 2003).

6.2 Galaxies from cosmological simulations

In Figs 6 and 7, we also show the V200–Mstar, Vopt–Mstar and Vopt–
V200 relations of galaxies formed in hydrodynamical cosmologi-
cal simulations: Abadi et al. (2003, green pentagon); Governato
et al. (2007, cyan triangles); Naab et al. (2007, red circles); Tissera
et al. (2009, magenta diamonds) and Piontek & Steinmetz (2009,
blue squares). For the simulations of ‘disc’ galaxies of Abadi et al.
(2003), and Governato et al. (2007), we use Vopt measured at
2.2 disc scalelengths (I band for Abadi et al. 2003, K band for
Governato et al. 2007). These simulations predict Vopt/V200 " 2,
which is even more discrepant with our results than the estimates
for the MW and M31. However, as shown by Dutton & Courteau
(2008) the simulated galaxies from Governato et al. (2007) do not
fall on the TF relation (V2.2 versus I-band luminosity), being off-
set to high rotation velocities. This offset is also apparent in the
Vopt–Mstar relation as shown in Fig. 6. The cause of this offset is not
clear, but it is likely a combination of insufficient numerical resolu-
tion which leads to artificial angular momentum losses (Kaufmann
et al. 2007), and/or insufficient feedback which results in baryon
fractions that are too high (Dutton & van den Bosch 2009), and/or
too much adiabatic contraction of the haloes.

The more recent simulations of disc galaxies from Piontek &
Steinmetz (2009) predict values of V2.2/V200 " 1.6±0.1. Although
these are lower than the V2.2/V200 from Abadi et al. (2003) and
Governato et al. (2007), they are still highly inconsistent with our
measurements. Fig. 6 shows that while the simulations from Piontek
& Steinmetz (2009) fall on the Vopt–Mstar relation at low masses, the
simulated galaxies have too much stellar mass at fixed halo velocity
(or halo mass), especially at low masses.

This demonstrates that while cosmological simulations of disc
galaxies have made great progress in producing galaxies that fall on
the V200–Mstar and Vopt–Mstar relations, they still have been unable
to produce galaxies that simultaneously reproduce both of these
relations. Reproducing these relations will provide a key test for
galaxy formation models.

The red circles show the simulations of Naab et al. (2007), with
parameters taken from Johansson, Naab & Ostriker (2009). The sim-
ulations produced early-type galaxies (spheroids with no disc com-
ponent). Three galaxies have Vopt/V200 > 1.6, which is higher (by
more than 2σ ) than our derived value. Galaxy A was re-simulated
with eight times more particles (2003) resulting in Vopt = 232 km s−1

and Vopt/V200 = 1.36; this galaxy is shown with a larger red circle.
This simulation has Vopt/V200 within 1σ of our results. This shows
that numerical resolution is still an important issue for cosmologi-
cal simulations that wish to resolve the internal structure of galax-
ies. While the simulations from Naab et al. (2007) can produce a

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS
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Adiabatic Contraction
Use r × M(<〈r〉) as an invariant 
to account for noncircular orbits

Gustafsson+06; Wang+10; Duffy+10

〈r〉= Arvir (r/rvir)w 
fit A & w to get better 

contraction model!



Orbit Correction?
Duffy et al. 2010

Similar:  Gustafsson+06; Wang+10
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Figure 11. The goodness of fit, σfit, of the G04 model for adiabatic contraction as a function of the parameters A and w, in logarithmic
units. The best-fit parameter combination is indicated by the red cross. The top and bottom rows show results at z = 2 and z = 0
respectively. From left-to-right we show the results for the PrimC NFB, ZC WFB and ZC SFB simulations respectively. For each
simulation the results are averaged over haloes matched to the DMONLY haloes with virial masses in the range 5−50×1011 (3−60×1013)
h−1 M" for the z = 2 (z = 0) samples. The parameter values corresponding to the models of B86 (A = w = 1, hence top right corner)
and G04 are shown as asterisk and open diamonds, respectively. The two parameters are substantially degenerate. The best-fit values
depend on halo mass, redshift, and on the implemented baryonic physics.

substantially from our best-fit values. These findings are in
good agreement with Gustafsson et al. (2006).

7.2 Predicted DM density profiles

The DM density profiles predicted by the adiabatic con-
traction models are shown in Fig. 12. When the parameter
values suggested by G04 are used, the G04 model predicts
similar profiles to B86, which do not describe the contracted
DM profiles well. The models typically underestimate the
DM density for r ! 10−1Rvir and more so for the simula-
tions with stronger feedback. If, on the other hand, we use
the best-fit values of A and w for each simulation and halo
sample then the predictions of the G04 method agree much
better with the simulated profiles, but even in that case one
would obtain a closer match to the actual density profile by
neglecting adiabatic contraction for r > 0.1Rvir.

It is perhaps not too surprising that the models for adi-
abatic contraction do not describe the simulations well. The
assumption that the baryons initially trace the DM halo
profiles is clearly violated in hierarchical models. Haloes are
built by mergers of smaller progenitors, and cooling and
feedback have already redistributed the baryons in these
objects. Rather than contracting slowly as the gas cools,
a large fraction of the baryons simply fall in cold (Kay et al.
2000; Kereš et al. 2005). Moreover, in the stronger feed-
back models a substantial fraction of the baryons is ejected.
Tissera et al. (2009) recently demonstrated that the con-
traction is manifestly not adiabatic. They find that the
pseudo-phase space density relation is strongly modified

when baryons were added to high resolution DM only sim-
ulations.

Models for adiabatic contraction are required when full
hydrodynamic simulations are not available. Unfortunately,
it is not possible to predict what values ofA and w to use for
the G04 model without a much better understanding of the
baryonic physics. Moreover, even if the physics were known,
we would need to simulate many haloes because the best-
fit values of the parameters depend on both halo mass and
redshift.

Our results suggest that it is better to ignore adiabatic
contraction for r > 0.1Rvir, but that the use of adiabatic
contraction models such as those by B86 and G04 does typ-
ically represent an improvement at smaller radii, provided
the feedback is moderate or weak.

8 CONCLUSIONS

Our main aim in this work was to investigate the response
of the DM halo to the presence of baryons at a variety of
masses and redshifts. We utilised a series of high-resolution
simulations within a cosmological volume, with a number of
different prescriptions for the sub-grid physics, to probe the
effect of baryons on the DM distribution of haloes. Our re-
sults centred on galaxy-scale haloes at z = 2 and groups and
clusters at z = 0. We were particularly interested to discern
the effect of the baryons when going from the situation in
which radiative cooling dominates (leading to a high cen-
tral concentration of baryons in the form of stars and cold
gas) to one where feedback dominates (reducing the central
galaxy mass and expelling gas from the halo). As we showed

c© 2008 RAS, MNRAS 000, 1–19
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filament at z = 0. The halos G2 and G3 are neighbors located at
425h!1 kpc (i.e., 610 kpc 2Rvir) from each other. The con-
figuration of this pair thus resembles that of the Local Group.
The third halo is isolated and is located 2 Mpc away from
the pair. The three hosts have similar masses at the present but
rather different mass accretion histories. Host G1 undergoes a
spectacular multiple major merger at z 2, which results in a
dramatic mass increase on a dynamical time scale. Halos G2
and G3 increase their mass in a series of somewhat less spec-
tacular major mergers which could be seen as mass jumps at
5 z 1. All three systems accrete little mass and experience
no major mergers at z 1 (or lookback time of 8 Gyr) and
thus could host a disk galaxy. Note, however, that halos G1 and
G3 experience minor mergers during this period.

2.2. Modeling Luminous Satellites

The relative scarcity of MW satellites compared to predicted
subhalo counts suggests that a naïve comparison of subhalo
populations to luminous galaxies may not be correct. This im-
plies that in order to make a more meaningful comparison with
the data, we should have a model to identify the DM subhalos
in simulations that would host observable, luminous galaxies.
We consider two alternatives.
The first dwarf galaxy formation model we consider was re-

cently proposed by KGK04 (see their § 6 for details). This
semi-analytic model is based on the subhalo evolutionary tracks
extracted from the simulations used in this study. The small-
mass dwarfs are identified with the halos that either have ac-
creted a large fraction of their mass prior to the epoch of reion-
ization (see also Bullock, Kravtsov, & Weinberg 2000; Ricotti
& Gnedin 2004) or were relatively massive at high redshifts
and could therefore retain most of their gas and form stars af-
ter reionization. Some objects in the latter category could lose
most of their former mass due to tidal stripping and appear as
relatively low-mass halos at the present epoch. The dwarf satel-
lite galaxies in this model can thus be hosted by both massive
and low-mass subhalos at z = 0.
The physical ingredients of the KGK04 model include: (1)

the suppression of gas accretion by the extragalactic UV back-
ground; (2) an observationally-motivated recipe for quiescent
star formation; (3) a starburst mode of star formation af-
ter strong peaks in tidal forces (which are calculated self-
consistently from the simulations); and (4) an accounting for
the inefficient dissipation of gas in halos with Tvir 104 K. The
model can successfully reproduce the circular velocity function,
the radial distribution, and the morphological segregation of the
observedMW satellites, as well as the basic properties of galac-
tic dwarfs such as their star formation histories, stellar masses,
and densities. In our analysis, we use the same set of subhalos
that were considered to be “luminous” according to this model
in KGK04 and refer to them as luminous subhalos.
The second model assumes that the observed MW satellites

are hosted by the most massive subhalos (Stoehr et al. 2002,
2003). In this model, it is conjectured that the masses of the
subhalos in which the luminous dwarfs are embedded are sig-
nificantly underestimated because the DM density profiles in
the central regions of the subhalos have been affected by tidal
interactions (Stoehr et al. 2002, 2003; Hayashi et al. 2003, see,
however, Kazantzidis et al. 2004b). The maximum circular ve-
locities of the Local Group dwarfs may thus be systematically
underestimated in observations because they are derived from
stellar velocity dispersion measurements within radii consider-

FIG. 1.— Host halo axis ratio profi les for the three MW-sized host halos.
Top: intermediate-to-long axis ratio q b a, as a function of long axis length.
Bottom: short-to-long axis ratio s c a. In both panels, the solid line rep-
resents halo G1, the dashed line represents halo G2, and the dot-dashed line
represents halo G3. The thick lines represent the shape profi les at z = 0, while
the thin lines represent the halo shape profi les at z = 1.

ably smaller than the radius at which Vmax is achieved. Stoehr
et al. (2002) argued that the bias induced by this is large, such
that all of the observed MW satellites can be embedded in the
most massive subhalos with Vmax 30! 40kms!1. This model
has an important physical implication. If the MW dwarfs in-
habit the most massive subhalos, then there must exist a certain
universal mass or Vmax scale below which galaxy formation is
completely quashed due to the UV background heating and in-
efficient gas cooling in dwarf halos. We consider this type of
model by associating luminous dwarfs with the eleven subhalos
with the highest values of Vmax at z = 0 within 300kpc of each
MW-sized host halo.

2.3. The Principal Axes of the Host Halos

We determine the principal axes of the three simulated host
halos and the corresponding principal axis ratios q b a and
s c a (a b c) in the following way. We construct a mod-
ified inertia tensor given by (e.g., Dubinski & Carlberg 1991)

Ii j = m xi x j
2 (1)

where m is the mass of the th particle, xi is the i coordinate
with respect to a reference frame centered on the density peak
of the halo, 2 (y

1
)2 + (y

2
s)2 + (y

3
q)2, and yi are the parti-

cle coordinates with respect to the halo principal axes. We use

• Halos in DM-Only simulations 
typically are not round, q≈0.65 & 
s≈0.6
• However, many inferences 
drawn from local group data 
suggest a nearly spherical MW 
halo (Olling+00; Ibata+01; 
Majewski+03; Helmi+04; 
Johnston+07; Majewski+08; 
Smith+10)
• Distant galaxy halos as well... 
(Dubinski+91; Olling+00; Buote
+02; Hoekstra+04; Mandelbaum
+08; Buote+09)
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FIG. 2.— Top and middle panels: Minor-to-major axis ratio, c a, as a func-
tion of radius for a cluster-size (top panel) and the galaxy-size (middle panel)
halo. The thick solid lines correspond to the DM, while the thin solid lines
show the combined c a of DM and stars in simulations with cooling. The
dashed lines show the profile of the DM in the adiabatic simulations. Bottom
panel: c a profiles of merger remnants. We show remnants from four merg-
ers: inclined halo!disk (solid), coplanar halo!disk (short-dashed), NFW halo
(dotted), and contracted halo (long-dashed). Thick lines show c a for DM only
and thin lines show c a for stars in the cases with initial stellar disks in the in-
clined (solid) and coplanar (short-dashed) mergers. We show the profiles at a
time 8 crossing times of the remnant.

& Merrifield 2000) may be somewhat different from results at
larger distances. Note that despite the significant flattening of
the baryons in the central 0 1rvir of the galaxy simulation, the
DM distribution around the disk is almost spherical.
It is interesting to ask if the ellipsoid of the DM halo is

aligned with that of the baryons. For clusters, in which most of
the baryons in the center are in stars, the major axes of the stel-
lar and DM distribution are approximately aligned at all radii.
For example, the major axis of the central cluster galaxy is well
aligned with the inner DM halo. However, we find that in clus-
ters that contain massive substructures in their outer regions,
the direction of the major axis often changes dramatically at
r 0 5rvir. In the galaxy simulation, the minor axis of the DM
distribution in the vicinity of the disk is aligned with the minor
axis of the disk; however, the flattening of the DM distribution
is small (Figure 2). Interestingly, at r 0 2rvir, the direction of
the major axis of the DM halo changes and is nearly perpendic-
ular to the disk.
We examined the evolution of themerger remnants and found

that their shapes evolve in their outer regions for 8 cross-
ing times or 14! 18 Gyr. This indicates that the shapes of
the outer regions of the cosmological halos are evolving at all
epochs. The bottom panel of Figure 2 shows the axis ratios of
the remnants in controlled merger experiments after 8 crossing
times, when the evolution has ceased. The shapes of the DM
halo merger remnants vary, depending strongly upon the pres-
ence of a disk component and the relative inclination of disks
prior to the merger. Mergers of halos with different central
density profiles produce remnants with very similar axis ratios.
When a disk component is present, the shape of the remnant
DM halo depends sensitively upon the initial relative inclina-
tion of the disks. Inclined disk mergers lead to a very spherical
stellar remnant and a correspondinglymore spherical DM halo,
compared to the halo-only cases. Coplanar disk mergers lead
to a very disk-like stellar component (small c a), and a DM
halo that is nearly as flattened as in the halo-only mergers. We
discuss the implications of these results in the next section.

4. DISCUSSION AND CONCLUSIONS

We show that halos in cosmological simulations with cooling
are considerably more spherical than in dissipationless simula-
tions. The difference decreases with increasing radius but can
be significant even at the virial radius. This is somewhat sur-
prising because cooling affects the mass distribution apprecia-
bly only in the inner 10% of the virial radius.
The condensation of baryons due to cooling leads to a more

concentrated distribution of DM, as it responds to the increas-
ing gravitationalfield of baryons in the center (Blumenthal et al.
1986). Thus, dissipation results in a significantly more cen-
trally concentrated mass distribution and a deeper gravitational
potential. Dubinski (1994) showed that this leads to the evolu-
tion of the halo toward a more spherical shape in a few cross-
ing times, arguing that as the central condensation grows, the
overall potential becomes rounder. This shifts the boundaries
between orbital families markedly, decreasing the fraction of
regular box orbits that serve as the backbone of a triaxial mass
distribution (Gerhard & Binney 1985; Udry & Martinet 1994;
Barnes & Hernquist 1996; Merritt & Quinlan 1998; Valluri &
Merritt 1998).
In hierarchical models of structure formation, halos grow

via a sequence of violent mergers and periods of slow accre-
tion. Although cooling can gradually make a halo more spheri-
cal, subsequentmergers can produce highly elongated remnants
(e.g., Moore et al. 2003), erasing the effect of dissipation dis-
cussed above. If no significant cooling occurs after the last ma-
jor merger5, the triaxiality of the halo will be largely determined
by the merger. Hence it is important to consider how cooling
affects the shapes of merger remnants. To this end, we analyze
a suite of controlled merger simulations of pure DM halos and
halos with embedded disks.
Cooling can directly affect the shape of stellar remnants dur-

ingmergers (Barnes &Hernquist 1996). However, a large amount
of cooling gas may be needed for this to significantly affect the
shapes of DM halos. Indeed, we compare remnant shapes in
mergers of disk!halo systems in which disks contain both stars
and a modest amount of gas (10% of the total disk mass), with
and without cooling. This comparison shows that the effect of
dissipation on the shapes of dark halos during the mergers of
these stellar-dominated disks is negligible.

5 For example, if the merger occurs after most of the gas is converted to stars
or the cooling time in the merger remnant is long.

r/Rvir
0.1 1.0

Kazantzidis et al. 2005

• Baryonic cooling in 
simulations gives 
dramatic changes in 
halo shape (but not 
velocity anisotropy; 
Tissera+2010)
•Changes as large as 
∆(c/a)≈0.2 are typical
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Fig. 6.— X-ray photon maps for the y-projection of CL7 in the NR run (left panel) and the CSF run (right panel). T he length of the side of each panel is 0.9
Mpc (r500 = 0.854 Mpc for the NR run, and r500 = 0.891 Mpc for the CSF run). Also shown are the isophotal contours (red) and the best-fit ellipses (green)
using the method described in Section 4.1.

Fig. 7.— Ellipticity profiles of the CL7 cluster with NR (left panel,
CL7:NR) and in the CSF run (right panel, CL7:CSF) viewed along three
orthogonal projections (x, y, z).

in the x-projection). For the CSF run, two projections have
very similar ellipticity profiles (the y and z projections), with
ε ≈ 0.2 at r ≈ r500 and increasing towards smaller radii, reach-
ing ε ≈ 0.4 − 0.45 at r ≈ 0.1r500. The x-projection, on the
other hand, exhibits low ellipticity comparable to the NR run,
ε ≈ 0.1, and shows no strong trend with radius. These re-
sults are consistent with the picture that the inner regions of
the CSF run consist of a disk-like structure in the core, which
appears highly elliptical when viewed edge-on (y and z projec-
tions), while the flattened disk appears more spherical when
viewed face-on (in the x projection).

Recently, the same set of simulated clusters are analyzed
(Fang et al. 2009, hereafter F09). In particular, the ellipticity
profiles of CL7 was presented in detail (cf. Figure 7 in F09).
Although our results are in qualitative agreement with those of
F09 as to the formation of flattened gas structure in the cluster
core, we find substantial quantitative differences regarding the
impact of the baryonic dissipation. For example, we find that
the ellipticity profiles for the CL7:CSF run are generally lower
than the corresponding F09 profiles. In the y-projection at

r = 0.3r500, we find ε ≈ 0.2 as opposed to the F09 value of
ε ≈ 0.5. Our ellipticities are even significantly (by ≈ 0.2 −
0.3) smaller in the cluster core. In addition, Figure 7 shows
that significant flattening of the isophotes due to cooling is
confined to r ! 0.2r500, not out to 0.4r500 as stated by F09.

F09 used flux maps in their analysis rather than mock X-
ray maps suggesting this difference as a possible source of
discrepancy. We have checked that using flux maps produces
nearly the same ellipticity profiles as mock X-ray maps, elimi-
nating this possibility. We have also checked ellipticities from
cumulative bins rather than annular bins and found that the
ellipticity increases only slightly to ε = 0.3 at r = 0.3r500.
By inspection, the F09 surface brightness map for the y-
projection of CL7:CSF, shown in their Figure 1, appears to
be inconsistent with ε = 0.5 at r = 0.3r500, but is consistent
with the isophotes and our fits shown in Figures 6 and 7.

Therefore, although we see effects qualitatively similar to
those pointed out by F09, the actual magnitude of the effect
of dissipation of ellipticity of the ICM gas is much smaller
than measured by F09 and is confined to the inner r ! 0.2r500
of the clusters.

4.3. Results
Figure 8 shows the ellipticity profiles derived from mock

X-ray maps averaged over 48 projections (3 × 16 clusters) for
all clusters as well as subsets of 21 images of relaxed clus-
ters and 27 images of unrelaxed clusters (see Table 1). The
radial coordinate here is actually the semi-major axis a of
the fitted ellipse in units of r500. We note explicitly that the
three-dimensional results in Section 3 were quoted as axis ra-
tios, while the results of this section are given in ellipticities
(ε = 1 − b/a).

The Figure shows that X-ray isophotes are more flattened
in cluster cores in the CSF runs compared to the NR clusters.
There is a clear rapid upturn in εCSF at r ! 0.1r500 reflect-
ing rotational motions of gas in these runs. Note that we do
not confirm results of F09 who claimed significant flattening

No Baryon cooling With Baryon cooling
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• Mock X-ray maps of simulated clusters compared to data...

•Elliptical shapes of 
cluster suggest minimal 
shape transformation 
(and minimal cooling?)



Locally

Pato et al. 2010

• Shape of halo may have interesting consequences for direct 
and indirect search results locally... 5
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FIG. 3: The dark matter density in the spherical shell 7.5 < R/kpc < 8.5 along the stellar disk plane and two perpendicular
planes for SR6-n01e1ML (top), and along the planes perpendicular to the principle axes for the pure dark matter simulation
(bottom). The solid horizontal line represents the mean of the points and the dashed line shows the value of the mean density in
the whole shell, dubbed ρ̄0. The sinusoidal curve shown in each plot is the best fit to the points in the form c1+c2 sin (2 (ϕ+ c3)).

dark mass, Mdm(< R), since this affects the rota-
tion curve of the Galaxy. Using the spherically av-
eraged density reported in figure 3 (dashed lines),
we find that the same enclosed mass Mdm(< 8 kpc)
would result in SR6-n01e1ML and the pure dark mat-
ter halo if the local DM densities are rescaled such that
ρ̄0(SR6-n01e1ML)/ρ̄0(DM only) ! 0.9. The lower den-
sity in the presence of baryons is simply a reflex of a
more concentrated profile. In any case, these estimates
do not translate directly into systematic uncertainties in
the determination of ρ0 since precise determinations of
local observables − namely the Oort’s constants A± B,
the Sun galactocentric radius R0 and the local visible
matter surface dentity Σ∗, see [6, 14] − constrain ef-

ficiently both ρ̄0 (through ∂(v2R)
∂R

∣∣∣
R0

) and Mdm(< R0)

(through v(R0)). Therefore, we conclude that consider-
ing a contracted dark matter profile would not change
significantly the determination of the local dark matter
density from precise dynamical observables, but would
eventually prefer smaller concentration parameters (or,
equivalently, larger scale radii Rs).

IV. CONCLUSIONS

The dark matter density in our neighbourhood is the
key astrophysical ingredient that fixes the flux of DM
particles crossing the Earth and the Sun, thus governing
the scattering off nuclei in underground detectors as well
as the capture rate in the Sun. Experiments looking for
DM-induced nuclei recoils or neutrino fluxes from the Sun
are hence crucially dependent on the local dark matter

density. In the present work we have tried to quantify
the systematic uncertainties associated to this parame-
ter, and that affect determinations based on dynamical
observables of our Galaxy. Using a very recent successful
attempt to simulate a spiral galaxy that resembles the
Milky Way, the dark matter density at the solar circle
was analysed in detail and compared to the pure dark
matter case.
One major consequence of the inclusion of baryons is

a significant flattening of the dark halo in the direction
of the normal to the stellar disk, leading to a DM over-
density in the local disk of up to 41% with respect to the
spherically averaged value. More specifically, we found
that in the MW-like simulated galaxy the local dark mat-
ter density is higher than the spherically averaged value
ρ0/ρ̄0 = 1.01−1.41, while in the DM-only case a broader
range is obtained ρ0/ρ̄0 = 0.39− 1.94.
Ideally, one should repeat the analysis in Ref. [14], i.e.

a Bayesian approach to mass modeling of the Milky Way
components, in presence of a triaxial profile like the one
discussed here. However, based on the considerations
presented above, a better estimate of the local dark mat-
ter density can be obtained by raising by 21% the mean
value obtained in Ref. [14] for the spherical case, keep-
ing relative statistical errors fixed and adding systematic
errors. In the case of an Einasto profile, this procedure
suggests

ρ0 = 0.466± 0.033(stat)± 0.077(syst) GeV cm−3 .

The baryons are also responsible for a non-negligible
contraction of the DM distribution towards the central
part of the galaxy. Even though this may be very im-
portant in searching for products of DM annihilations −

• Stellar disk enhances DM density in the plane (compared to 
measures that average spherically to derive DM density)
• Deviations from axial symmetry lead to time-dependent 
density along the Sun’s orbit.
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Disk Consequences
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• The disk is heated and disk “features” are generated...Substructure and Galactic Disks 5

Figure 2. Density maps of disk stars illustrating the global morphological evolution of a galactic
disk subject to a ΛCDM-motivated satellite accretion history. The left panel shows the initial
disk assuming that the sequence of satellite-disk interactions initiates at z = 1, while the right
panel depict the disk after the last satellite passage, evolved in isolation for additional ∼ 4 Gyr,
so that the evolution of disk stars is followed from z = 1 to z = 0. The edge-on (upper panels)
and face-on (bottom panels) views of the disk are displayed in each frame and the local density
is calculated using an SPH smoothing kernel of 32 particles. Satellite-disk interactions produce
several distinctive signatures in galactic disks: long-lived, low-surface brightness, ring-like fea-
tures in the outskirts; conspicuous flares; bars; faint filamentary structures above the disk plane
that (spuriously) resemble tidal streams in configuration space; and a complex vertical morphol-
ogy that is well-described by the commonly adopted “thin-thick” disk decomposition analysis.
These morphological features are similar to those being discovered in the Milky Way, M31, and
other disk galaxies.

alizations of satellites models. Each satellite was represented with Nsat = 106 particles
with a gravitational softening length of εsat = 150 pc. For the primary galaxies, we used
a Nd = 106 particles to represent the disk, Nb = 5 × 105 in the bulge, and Nh = 2 × 106

in the halo, and softenings of εd = 50 pc, εb = 50 pc, and εh = 100 pc, respectively. All
satellite-disk encounter simulations were carried out using PKDGRAV (Stadel 2001).

The “final” disk discussed in the next sections has experienced all six subhalo impacts
and was evolved in isolation for ∼ 4 Gyr after the last interaction. This ensures that all of
the resultant morphological features are long-lived rather than transient. Consequently,
our results are relevant to systems that exhibit no obvious, ongoing encounters. Finally,
we compute all properties of the disk and show all visualizations of the disk morphology
after centering the disk to its center of mass and rotating it to a new coordinate frame
defined by the three principal axes of the total disk inertia tensor.

3. Global Disk Morphology

Figure 2 depicts the transformation of the global structure of a thin galactic disk
subject to repeated subhalo impacts. This figure shows face-on and edge-on views of the
initial and final distributions of disk stars. Particles are color-coded on a logarithmic
scale with brighter colors in regions of higher stellar density.
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• The disk “heats” substructure and serves to destroy them 
more efficiently than N-body only simulations

Also: Kazantzidis et al. 2009
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FIG. 3.— Cumulative number of subhalos above a given mass limit, for the
evolved simulations with and without a disk within two virial radii. At late
times, the disk can reduce the substructure abundance by nearly a factor of
two.

FIG. 4.— Spatial distribution of substructures within 150h−1kpc of the
galaxy center, comparing the case when a disk is not included (top set of pan-
els) with the case where disk is included (bottom set of panels). For both,
we show the distribution at the initial time t = 0 (top rows) and after 3.7Gyrs
and 5.5Gyrs, respectively (middle and bottom rows). Circle areas are pro-
portional to the substructure masses.

the radial cumulative abundance of substructures between the
runs with and without disks. As time goes by, the depression
of the subhalo function in the disk case increases, in propor-
tion to the larger number of disk passages that have occurred.
This substructure depletion is particularly strong in the inner
parts of the halo, even though an effect is also noticeable in
the outer parts. In Figure 3, we plot instead the cumulative
substructure count as a function of mass, comparing again the
simulations with and without a disk at two different times af-
ter the start of the simulations. There is up to a factor of ∼ 2
reduction in the substructure abundance, and the effect is ap-
proximately independent of substructure mass if we discard
the measurement for the most massive bin, which is popu-
lated by only one object and therefore allows no statistical
conclusions.
The depletion of the substructure abundance is also re-

flected in the spatial distribution of substructures, which we
show in Figure 4 at different times for the cases without a disk
(top) and when a disk with a final mass equal to 10% of the
final halo mass included (bottom). The areas of the symbols
are proportional to satellite mass.
Figures 2, 3 and 4 confirm that a disk accelerates mass loss

by satellites, altering the subhalo mass function. Overall, the

FIG. 5.— Energy of a satellite of 107 M# as compared to its binding energy
being affected by disk shocking produced by an exponential disk (blue dashed
line), by a Kuzmin disk as in our simulations (solid red line), and by tidal
shocking from the halo (green solid line) for different pericentric distances of
the satellite orbit.

FIG. 6.— Radial dependence of the intermediate to major axis (b/a) (bot-
tom panel) and minor to major axis (c/a) (top panel) ratios of ellipsoids fitted
to the halo when a disk is included.

effect of the disk is to reduce the number of substructures and
the masses of those that survive already after 3.7 Gyrs. More-
over, with time the disk also compresses the dark matter dis-
tribution in the center, further contributing to subhalo heating
and accelerating the mass loss of these systems. A measure-
ment of the halo radial dark matter density profile showed that
the halo contracts and becomes denser by a factor of 2 within
the inner regions owing to the gravitational potential of the
disk. We also note that the presence of a disk makes the inner
parts of the dark matter halo rounder, an effect that we further
quantify below.
We can identify three physical mechanisms which cause

substructures to lose mass and to eventually be disrupted.
First, as these objects orbit within the halo-galaxy sys-
tem, they will be tidally stripped. The contribution
of the halo to this process has been included in previ-
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F. 6.— Mean concentration of radial distributions of main mass components as a function of halo mass. Hashed regions contain 68% of halos in a given mass
bin. Scatter in the concentration relation for the DMO simulation is comparable to that in the DMG NR simulation and is omitted for clarity. Error bars correspond
to the estimated error on the mean concentration in each bin. Left panel: the mean NFW concentration fit to the total (i.e., DM+gas+stars) mass distribution for
all three of our simulations as indicated at the bottom of the panel. Center panel: the mean NFW concentration fit to the dark matter distribution in all three
simulations. Right panel: the mean Burkert concentration fit to the gas density profiles in the DMG NR simulation.

contribution is given by

P1Hi j (k) =
1

ρiρ j

∫

dmm2 fi(m) f j(m)
dn

dm
λi(k;m)λ j(k;m), (5)

where ρi is the mean density in the ith matter component,
fi(m) is the average fraction of mass in halos of total mass
m residing in the ith component, dn/dm is the mass function
of halos, and λi(k;m) is the Fourier transform of the mean
density profile of the ith component in halos of total mass m.
For example, the profiles of dark matter halos are often mod-
eled by NFW profiles, in which case, λi(k;m) is the Fourier
transform of the NFW density profile (e.g., given by Scocci-
marro et al. 2001) with a concentration parameter set by some
relation (e.g., Bullock et al. 2001). The two-halo contribution
to P(k) is

P2Hi j (k) =
1

ρiρ j
Plin(k)Bi(k)Bj(k), (6)

where

Bi(k) ≡

∫

dmmfi(m)
dn

dm
λi(k;m)bh(m), (7)

Plin(k) is the linear matter power spectrum, and bh(m) is the
mass-dependent halo bias.
Our primary aim in applying the halo model is to study the

qualitative features of the spectra from our simulations rather
than to provide a precise, quantitative description. There-
fore, we adopt the fitting forms for the mass function and lin-
ear bias of dark matter halos provided by Sheth & Tormen
(1999), rather than any of several updated bias prescriptions
(e.g., Jenkins et al. 2001; Seljak &Warren 2004; Tinker et al.
2006, see Cooray & Sheth 2002 and Zentner 2006 recent re-
views). This choice guarantees that the two normalization re-
lations

1

ρ

∫

dm
dn

dm
= 1 (8)

and
∫

dm
dn

dm

(

m

ρ

)

bh(m) = 1 (9)

are satisfied identically without making any further, and of-
ten arbitrary, choices about how these relations should be
enforced. As halos have a finite extent set by their virial
radii, the integrals in Eq. (7) should not extend over all mass

but should be limited to halos with virial radii smaller than
r ∼ k−1. This effect is known as halo exclusion. Though
more complex and accurate implementations of halo exclu-
sion exist (e.g., Tinker et al. 2006), we use the model for
halo exclusion introduced by Zheng (2004). Briefly, we set
the upper bounds on the integrals in Eq. (6) to the halo mass
that corresponds to a virial radius of rmax = 2πk

−1. Previous
studies have found this prescription to be useful for practical
applications (e.g., Zheng 2004; Zehavi et al. 2004).
The last ingredients necessary to build a halo model of the

matter power spectrum are specifications of the density pro-
files that characterize the distribution of each matter compo-
nent within halos. We treat each of the cases of pure dark
matter, dark matter with non-radiative gas, and dark matter
with gas cooling and star formation slightly differently, with
prescriptions motivated by our set of simulations.
We model the dark matter halos in both the N-body and

non-radiative cases with the NFW density profile [Eq. (3)].
As in § 3.2.2, the concentrations of halos are different in each
case, and we include this effect in our implementation of the
halo model. In our modeling, it is necessary to extrapolate be-
yond the range of concentrations probed directly by our sim-
ulations. Partly motivated by the fact that we aim to represent
the features of our simulated spectra qualitatively, we adopt a
particular form of the analytic model for halo concentrations
introduced in Bullock et al. (2001). Similar to other authors
(e.g., Dolag et al. 2004; Kuhlen et al. 2005; Wechsler et al.
2006; Macciò et al. 2007), we find that the relationship be-
tween concentration and mass in our simulations has a smaller
normalization and a slightly shallower slope than that of the
Bullock et al. (2001) model in its original form. In the Bul-
lock et al. (2001) model, the parameter F controls the slope of
the concentration-mass relation while K is an overall normal-
ization. The original work of Bullock et al. (2001) advocates
values of F = 10−2 and K = 4.0. We find that the mean con-
centration as a function of mass in the DMO simulation is well
described by the Bullock et al. (2001) model with parameters
F = 10−5 and K = 1.7. We stress that these parameters are
not the result of a formal fitting procedure and defer further
exploration of the concentration-mass relation to future work.
The halos in our DMG NR simulation exhibit somewhat

higher concentrations than those in the DMO simulation. Over
the mass range measured in the simulation, we use the mea-

• Modified Halo Concentration Relation 
Relative to the Standard N-Body Result

Rudd et al. 2008



Parameter Biases
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“Conclusions”
1. Some Halo Contraction Likely Happens, but it 

is hard to assess the degree and it depends 
upon messy details of galaxy formation

2. Baryonic Contraction likely makes halos 
rounder (altering, in principle, constraints on 
SIDM), but the degree is again hard to assess

3. The presence of galaxies should reduce the 
prevalence of substructure, but the degree is 
hard to assess



The Correlation 
Function

• Excess probability of finding a galaxy a 
distance r, from another:

• If the local galaxy density is ng = ng [1+δ(x)], 
then:

• and:  

dP = n̄gdV1 × n̄g[1 + ξ(r)]dV2

-

dP= n̄2
g 〈[1 + δ("x1)][1 + δ("x1 + "r)]〉dV1dV2

= n̄2
g[1 + 〈δ("x1)δ("x1 + "r)〉]dV1dV2

ξ(r) = 〈δ(#x1)δ(#x1 + #r)〉
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The Halo Model

Halo, M1

satellite
galaxies

r

Halo, M2

r

• Compute correlation statistics using halos as the 
fundamental unit of structure: ξ(r)=ξ1H(r)+ξ2H(r)

satellite
galaxies

central 
galaxycentral 

galaxy



Analytic Method



Modeling Framework

time
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