

LEA Saclay

Institut de recherche sur les lois fondamentales de l'Univers

Analysis and Signal Processing

DDays IRFU - 09/07/2019

CHERRIER Noélie (DPhN), DAGONEAU Nicolas (DAp), DANIEL Geoffrey (DAp), EL-HAMZAOUI Imane (DEDIP), PICHON Thibault (DAp)

Introduction Instruments and observation programs: signal acquisition

Signal forward and inverse process

Bridle et, al. 2008

Detector output with noise

Instrument

Intrinsic galaxy (shape unknown)

Physical process

Analysis and Signal Processing

Signal forward and inverse process

Bridle et, al. 2008

Signal forward and inverse process

Bridle et, al. 2008

From instruments to interpretable data

Modelling and experimental characterization of proton irradiation induced luminescence of CdZnTe substrate in HgCdTe detectors

Thibault Pichon (DAp)

ALFA (Astronomical Large Format Array) IR detector

juice	euclid
IR Detectors: Teledyne H1RG	IR Detectors: Teledyne H2RG
Launch Date: 2022	Launch Date: 2022

ALFA is an Infrared Detector develop for the future ESA space mission.

ESA Specifications :

- HgCdTe
- 2048x2048 pixels
- 15µm pixel pitch
- Spectral Domain 0.8µm 2.1µm
- Operating Temperature 100K
- Quantum Efficiency ≥70%
- Dark Current ≤0.1e-/s/pix
- Readout Noise ≤ 18 e- rms

ALFA (Astronomical Large Format Array) detector

ALFA pixel = LETI planar technology IR photon à l'énerge $<math>E_p ~ E_g$ IR photon à l'énerge $<math>E_p ~ E_g$

Radiation effects on american detectors

Substrate Removal

- Degradation of detector performances
- Low yield of substrate removal process

Which substrate thickness can be kept?

Modelling approach

- Particle penetration is simulated with Monte Carlo simulations. 6 GEANT4
- Carriers transport is modelled analytically and with TCAD software. SILVACO 2 python

Simulated images of a 15µm pixel pitch 512x640 HgCdTe detector

Simulation performed with data found in the litterature 300K

<u>Material properties should be known</u> \Rightarrow

Material characterisation (photoluminescence, cathodoluminescence, ellipsometry, XEOL, ...) were performed on representative samples.

Experimental campaigns

Irradiation cryostat

Detector support

- A cryostat has been refurbished for the irradiation campaign
- Detectors to be irradiated are characterized

Proton Accelerator:

ALTO accelerator at Orsay

Detectors to be irradiated:

- Similar to ALFA technology
- Smaller format
- Several substrate thicknesses

Data processing for the hard X-ray ECLAIRs telescope onboard SVOM

Nicolas Dagoneau (DAp)

Data processing onboard SVOM/ECLAIRs

Spaced based multi-band astronomical Variable Object Monitor

French (CNES) – Chinese (CNSA/CAS) collaboration

Launch in December 2021 in China (Xichang, Long March rocket)

A multi wave-length mission with space based and ground based instruments

Data processing onboard SVOM/ECLAIRs

Difficult to focus hard X-rays with mirrors (need a very long focal length) → ECLAIRs uses coded mask to localise GRB

Field of view: 2 sr 80x80 pixelated CdTe detector Localization error: < 12 arcmin 2 triggers: count rate monitoring and image

Energy range: 4-150 keV

Ti-Ta-Ti mask

Data processing onboard SVOM/ECLAIRs

Detector signal = Background + known sources contribution + GRB (possibly)

Cleaning 1 - Cosmic X-ray Background (Moretti et, al. 2009)

No cleaning \rightarrow artifacts that reduce GRB detection efficiency Cleaning of Cosmic X-ray background (2 methods):

- fit of a quadratic model:

$$a \cdot x^2 + b \cdot y^2 + c \cdot x \cdot y + d \cdot x + e \cdot y + f$$

- Wavelets: "à trou algorithms" (Stark et al. 2007) remove large scales in detector images
 - Wavelets are faster and do not need assumptions on the background shape.

Cleaning 2 - Known X-ray sources

Deconvolution without cleaning

No cleaning \rightarrow source peak and noise all around that reduce GRB detection efficiency

Cleaning of known sources: fit of the source model (1 param: its flux)

- simultaneously with the Cosmic X-ray Background
- after wavelet cleaning

Development and Optimization of a Miniature Compton Camera with coded mask aperture: analysis method of a radiative environment by spectra-identification and 3D localization of gamma ray sources

Geoffrey Daniel (DAp)

Development of a miniature gamma camera

CdTe semi-conductor crystal Low-noise readout ASICs: IDeF-X HD (DEDIP)

High energy range: from 2 keV to 1 MeV

High energy resolution

670 eV FWHM at 60 keV (1,1 %) 4,1 keV FWHM at 662 keV (0,62 %)

 \rightarrow Spectrometry

Pixelated detector 16 x 16 pixels

625 µm pixel pitch 1 mm thickness Surface: 1 cm²

Mass: 1 kg

 \rightarrow Imaging system

Nuclear safety application

Caliste-HD (CEA Irfu)

Development of a miniature gamma camera: spectro-identification

Development of a miniature gamma camera: spectro-identification

21

Development of a miniature gamma camera: localization

Energy conservation:

 $E_0 = E_1 + E_2$

Compton kinematics:

$$E_{2} = \frac{E_{0}}{1 + \frac{E_{0}}{m_{e}c^{2}}(1 - \cos(\theta))}$$

Development of a miniature gamma camera: localization

Multivalued data analysis with Blind Source Separation

Imane El hamzaoui (DEDIP)

Modelization of the data through Linear Mixture Model

Х

 $A^{1}S_{1} + A^{2}S_{2} + A^{3}S_{3} + ... + N =$

Modelization of the data through Linear Mixture Model

$$\label{eq:2.1} {\bf A}^1 {\bf S}_1 \ + \qquad {\bf A}^2 {\bf S}_2 \ + \ {\bf A}^3 {\bf S}_3 \ + ... + \qquad {\bf N} \ = \qquad {\bf X}$$

26

Sparse Blind Source Separation

Blind Source Separation aims at disentangling mixed components to retrieve

meaningful information:

$$\min_{A,S} \underbrace{||X - AS||_F^2}_{}$$

Data-fidelity term

Goal of the PhD: application of the BSS to high-energy imaging

1. Poisson noise: High-Energy photon count is so low that we cannot consider the noise gaussian.

The modelization $\mathbf{X} = \mathbf{AS} + \mathbf{N}$ is no more valid.

Goal of the PhD: application of the BSS to highenergy imaging

2. Spectral variabilities: spatially variant spectra are ubiquitious to X-ray imaging.

Machine learning for CLAS12 data analysis

Noëlie Cherrier (DPhN)

Study the proton structure

Scientific interest: understand the structure of the proton

Generalized Parton Distributions (GPDs): quarks longitudinal momentum and transverse position correlations

CLAS12 experiment

electron accelerator (10.6 GeV)

Process of interest to study GPDs: Deeply Virtual Compton Scattering (DVCS)

DVCS extraction

Machine learning for DVCS/Pi0 separation

Interpretable ML: training on Monte-Carlo simulations and application on real data

Interpretable ML algorithms

X Neural networks

y= complex non-linear function of inputs

✓ Decision trees

~

- IF x1>2.7 AND x2<-4.3 THEN y= signal
- y= vote among trees

List of rules

Boosted decision trees

If $x_1 > \alpha_1$ and $x_2 < \alpha_2$ then DVCS If $x_1 < \alpha_3$ and $x_3 > \alpha_4$ then Bkg ...

Feature construction

Constrained Genetic Programming algorithm to build new high-level variables to improve DVCS/Pi0 separation $p_z^e + p_z^{\gamma_1} + p_z^p$

Conclusion

Simulated image of IR detector under irradiation

Clean sky image with a well localized GRB

37

Spectro-identification of radioactive sources