Faits marquants 2017

06 octobre 2017

Le consortium CTA (Cherenkov Telescope Array), qui regroupe 1300 scientifiques de 32 pays dans le monde a publié fin septembre le recueil de ses objectifs scientifiques, un document de plus de 200 pages, résultat de plusieurs années de travail auquel ont contribué des chercheurs de l’Institut de recherche sur les lois fondamentales de l’Univers (Irfu) du CEA.

A l'Irfu, le projet compte une quinzaine de physiciens et d'astrophysiciens du département de physique des particules (Irfu/DPhP) et du département d’astrophysique (Irfu/DAp). Leurs recherches se concentrent sur les phénomènes galactiques, la matière noire, les études de physique fondamentale et l’étude des phénomènes transitoires de l’Univers, des sujets abordés aujourd’hui grâce à leur implication dans les instruments H.E.S.S., Fermi, Integral, et XMM-Newton, pour n’en citer que quelques-uns.

L’observatoire CTA est sur le point de transformer notre vision du ciel à très haute énergie en détectant la lumière Tcherenkov produite par l’interaction des rayons gamma dans l’atmosphère. Afin de couvrir la totalité de la voute céleste, deux réseaux sont en cours d’installation respectivement sur le plateau d’Armazones au Chili et sur l’Ile de la Palma (archipel des Canaries). Ils comporteront au total une centaine de télescopes qui permettront d’étudier les phénomènes cataclysmiques de l’Univers, de sonder la matière soumise à des conditions extrêmes, et d’explorer les frontières de la physique, avec des performances dix fois supérieures aux instruments existants.

28 mars 2017

L’ESS (European Spallation Source) dont la construction a démarré en 2013 à Lund en Suède, sera la source de spallation la plus puissante au monde. Dans le cadre de ce projet, l’Irfu vient de livrer ses deux premières contributions : un diagnostic optique et un émittancemètre. En effet, il est indispensable de contrôler différents paramètres dont la pureté du faisceau ainsi que sa vergence qui sont tous deux sous la responsabilité de l’Irfu. L’institut a donc été en charge de la construction de deux émittancemètres et d’un diagnostic optique. Ce dernier mesure la pureté du faisceau grâce au décalage Doppler. Les différentes espèces d’ions ont une énergie identique mais pas la même masse, donc des vitesses différentes, ce qui génère des décalages Doppler en fonctions des types d’ions. La pureté attendue est de l’ordre de 80% ce qui a été obtenu lors des tests à Catane. Le deuxième contrat de l’Irfu concerne le développement d'émittancemètres qui contrôlent la vergence du faisceau. Ils viennent de terminer leur dernière session de tests en janvier 2016 démontrant de très bonnes performances. La livraison de ces diagnostics et le succès des « Acceptance Tests » par l’ESS permettent de clore deux contrats signés entre le CEA et l'ESS dans le cadre de la contribution en nature de la France à cette source de neutrons.

28 novembre 2017

L’instrument NISP (Near IR Spectrometer Photometer) est un spectro-photomètre infrarouge qui équipera le télescope spatial Euclid (lancement prévu en 2021) dans le but de mieux comprendre la matière noire et l’énergie noire. Après trois ans de R&D aboutissant à un modèle de qualification, et 6 mois pour la construction et les tests du modèle de vol, les 2 cryomoteurs de NISP ont passé avec succès en novembre l’ensemble des tests de recette.  Une équipe de physiciens d'ingénieurs et de techniciens du CEA-Irfu est prête à les livrer au consortium instrumental Euclid/NISP. Ces cryomoteurs sont destinés à faire tourner les roues porte-filtres et porte-grismes1 qui détermineront le mode d'observation de la caméra NISP en photométrie ou en spectroscopie. Ces deux modes sont indispensables  pour mesurer la forme et l'âge des galaxies.

1Un grisme est un prisme dont une des faces est usinée de façon à former un réseau de diffraction afin de ne laisser passer qu'une seule longueur d'onde.

 

Deux cryomoteurs développés et testés à l’institut de recherche sur les lois fondamentales de l'univers (CEA-Irfu) équiperont le spectromètre infrarouge du télescope spatial EUCLID de l’Agence Spatiale Européenne (lancement en 2021). Ces moteurs permettent de positionner avec précision les roues porte-filtres et porte-grismes de l’instrument. Crédits : CEA/Irfu – Olivier Corpace et Quentin Guihard

 

06 décembre 2017

Depuis plus de 10 ans maintenant, les physiciens et ingénieurs de l’Irfu ont développé à Saclay l’appareillage nécessaire pour l’expérience GBAR, conçue pour tester le comportement de l’antimatière sous gravité terrestre. Une étape importante vient d’être franchie avec le montage au Cern d’une nouvelle source de positons utilisant sur un linac à électrons, et le transport au Cern du système de piégeage des positons construit à Saclay.

La nouvelle source a produit ses premiers positons le 17 novembre 2017. L’installation des pièges est en cours, pour être opérationnels lors de l’arrivée des antiprotons, prévue pour le printemps 2018.

12 juillet 2017

Le 6 juillet 2017, en présence de Daniel Verwaerde, administrateur général du CEA, André Syrota, conseiller de l'administrateur général, Claire Corot, directrice recherche et innovation chez Guerbet, Serge Ripart, directeur imagerie chez Siemens Healthcare France, et Gilles Bloch, président de l'Université Paris-Saclay, l'aimant géant de 132 tonnes du projet Iseult a intégré officiellement l’infrastructure de recherche NeuroSpin du centre CEA de Paris-Saclay (Essonne). Cet objet de très haute technologie, qui constitue l’élément principal du scanner IRM (Imagerie par Résonance magnétique) le plus puissant au monde destiné à l’imagerie du cerveau humain, produira un champ magnétique de 11.75 teslas, soit près de 230000 fois le champ magnétique terrestre. Pour atteindre ce niveau de champ magnétique, les ingénieurs chercheurs du CEA ont dû concevoir un aimant supraconducteur hors norme!

Vous revivrez l'aventure de cet aimant sous ce lien.

24 avril 2017

Ce mardi 18 avril 2017, les équipes de l’aimant du projet Iseult du CEA et de GE se sont réunies à Belfort pour fêter l’aboutissement de leur travail commun. Après six années de construction jalonnées de sueurs froides et de moments de fierté, ce bijou de technologie pesant près de 130 tonnes est soumis à d’ultimes tests avant de débuter son grand voyage vers Neurospin. Une fois installé à Saclay de nombreuses et délicates opérations l'attendent encore:  il faudra l’équiper pour qu’il devienne un aimant de scanner IRM, le brancher à son système cryogénique et l’amener doucement au champ  magnétique record de 11,7 teslas, unique aujourd'hui pour un aimant de cette taille. Fingers crossed car d'ici un an environ, ce projet unique au monde permettra d’obtenir des images du cerveau humain avec une précision jamais atteinte.

 

 "C'est une grande joie de fêter avec les équipes la fin de la construction de cet aimant , une prouesse en soi, avant la prochaine étape à Saclay: la montée en champ! Félicitations à tous pour cette belle réalisation !" témoigne Anne-Isabelle Etienvre, directrice de l'Irfu.

"Vous avez tous réalisé un travail remarquable dont j'ai mesuré toute l'ampleur au cours de cette cérémonie. On m'a beaucoup parlé de cet aimant depuis mon arrivée au CEA il y a 4 ans, le voir en vrai c'est autre chose ! Les équipes de NeuroSpin et de l'institut Frédéric Joliot attendent maintenant avec impatience (et beaucoup d'espoirs) ce magnifique aimant à NeuroSpin, sur lequel nous allons continuer à collaborer avant de pouvoir faire les premières images ...." Alix De La Coste, directrice adjointe de la DRF.

21 juin 2017
La mission européenne PLATO définitivement acceptée à l'ESA

La mission spatiale PLATO (Planetary Transits and Oscillations of stars / Transits Planétaires et Oscillations d'étoiles) a été adoptée lors d'une réunion du Comité du programme scientifique de l'Agence Spatiale Européenne (ESA) qui s'est tenue le 21 juin 2017. PLATO a pour objectif la découverte de planètes rocheuses autour d’étoiles proches, semblables à notre Soleil. Sélectionnée par l’Agence Spatiale Européenne (ESA) en 2014, la mission était en préparation et son adoption clôt la phase d’étude et donne le feu vert à la phase de réalisation des instruments. Par suite, dans les prochains mois, un appel d’offre va être lancé pour la fourniture de la plate-forme spatiale sur laquelle sera placé le télescope et ses instruments. PLATO sera lancé en 2026, et il sera placé à près de 1,5 million de km de la Terre. Le satellite surveillera des dizaines de milliers d'étoiles brillantes, recherchant des variations de lumière de quelques dix millièmes, et périodiques, signes du passage d’une planète devant le disque de leur étoile.

13 mars 2017
Mystérieux alignement de l'axe de rotation des étoiles dans deux amas

Les étoiles ne jouent pas aux dés ! C'est l'extraordinaire découverte qu'on fait les chercheurs du Département d'Astrophysique-Laboratoire AIM du CEA-Irfu en parvenant à déterminer l'orientation dans l'espace de l'axe de rotation d'étoiles appartenant à deux amas d'étoiles grâce à l'astérosismologie. Environ 70 % des étoiles observées ont des axes de rotation parfaitement alignés, en contradiction formelle avec les modèles de formation d'étoiles qui prédisent au contraire que ces axes de rotation devraient être distribués totalement aléatoirement. Des simulations numériques ont permis de montrer que, très probablement, ces étoiles avaient réussi à conserver le mouvement de rotation initiale du nuage qui a donné naissance à l'amas. Cette découverte, si elle est confirmée dans d'autres amas, pourrait amener à reconsidérer les processus fondamentaux de la formation des étoiles. Ces travaux font la une de la revue Nature Astronomy du 13 mars 2017.

Voir l'interview : Le mystère de l'alignement de l'axe de rotation des étoiles 

26 juin 2017

Au bout de quatre ans de recherche et développement, l’équipe du projet LUMINEU, préparant CUPID, le futur de la traque de la désintégration double beta sans émission de neutrino (0νββ) avec des bolomètres, élit le molybdate de lithium pour un démonstrateur. En 2016, pas moins de quatre publications décisives impliquant des chercheurs de l’Irfu couronnent ce travail et éclairent la voie à suivre.

21 décembre 2017

Faire une photo en haute définition des réactions nucléaires est maintenant possible avec le nouveau détecteur ACTAR TPC (ACtive TARget Time Projection Chamber) développé au GANIL dans le cadre d’une collaboration internationale. Le dispositif ACTAR TPC remplit deux fonctions simultanément : celle de cible et celle de détecteur. En effet, le gaz dont il est rempli constitue la cible de matière avec laquelle interagit le faisceau d’ions incident. Par ailleurs, l’ionisation de ce même gaz, par les ions projectiles et par les particules produites lors des collisions nucléaires, permet de visualiser leurs trajectoires en trois dimensions et donc de « voir » la dissociation des noyaux atomiques impliqués dans la collision. L’électronique développée et dédiée spécifiquement à ce type de détecteur, associée à un nombre de voies très important, permet de reconstituer très précisément ces trajectoires grâce à l’acquisition de quelques 8 Méga Voxels (éléments de volume) jusqu’à 100 fois par seconde. En novembre 2017, ACTAR-TPC a passé avec succès les tests sous les faisceaux du GANIL et sera donc utilisé lors de la campagne d’expériences 2018 au GANIL.

16 avril 2017

L’expérience d’astrophysique PILOT a été lancée le 17 avril sous un ballon stratosphérique depuis Alice Springs, au centre de l’Australie. Le but est d’observer la polarisation de l’émission des grains de poussières présents dans le milieu interstellaire de notre Galaxie et des galaxies proches. Avec une masse de près d’une tonne, PILOT [1] utilise les plus gros ballons lancés par le Centre National d'Etudes Spatiales (CNES). Elle a été développée par l’Institut de recherche en astrophysique et planétologie (CNRS/CNES/Université Paul Sabatier) et l’Institut d’astrophysique spatiale (CNRS/Université Paris-Sud) et l’Institut de recherche sur les lois fondamentales de l’univers (CEA-Irfu). Les détecteurs capables de détecter le rayonnement infrarouge des poussières ont été développés au CEA et sont issus des travaux effectués pour réaliser la caméra PACS qui équipait l'observatoire spatial Herschel.

17 octobre 2017
Migration planétaire: les effets magnétiques changent-ils la donne ?

Une grande partie des exoplanètes connues aujourd’hui sont en orbite très proche autour de leur étoile, permettant des interactions très intenses entre les planètes et l'étoile hôte. Une collaboration internationale, menée par des chercheurs du Département d'Astrophysique-Laboratoire AIM du CEA-Irfu, a montré que ces planètes en orbite proche migrent rapidement, dû à l’effet conjoint des forces de marées et des forces magnétiques. Cette étude apporte des éléments essentiels pour la compréhension de la formation et de l’évolution des systèmes étoile-planètes.  Ces effets de migration devraient être prochainement observables par des missions comme PLATO (PLAnetary Transits and Oscillations of stars) de l'Agence Spatiale Européenne (ESA) qui vont étudier la zone d'habitabilité des planètes. Ces résultas sont publiés dans la revue Astrophysical Journal Letters d'octobre 2017.

13 juillet 2017
Le secret des cycles magnétiques des étoiles

Grâce à de nouvelles simulations numériques, une équipe scientifique animée par des chercheurs du Département d'Astrophysique-Laboratoire AIM du CEA-Irfu est parvenue à expliquer pourquoi le champ magnétique du Soleil se renverse tous les 11 ans. Les scientifiques ont mis en évidence l’existence d’une rétroaction forte entre le champ magnétique de l’étoile et son profil de rotation interne, dont les modulations temporelles déterminent ultimement la période du cycle. Cette découverte majeure quant à la compréhension de l’origine du champ magnétique des étoiles est publiée le 14 juillet 2017 dans la revue Science.

Voir la vidéo :   Le cycle magnétique du Soleil en réalité virtuelle (CEA Astrophysique)

21 juin 2017
La mission européenne PLATO définitivement acceptée à l'ESA

La mission spatiale PLATO (Planetary Transits and Oscillations of stars / Transits Planétaires et Oscillations d'étoiles) a été adoptée lors d'une réunion du Comité du programme scientifique de l'Agence Spatiale Européenne (ESA) qui s'est tenue le 21 juin 2017. PLATO a pour objectif la découverte de planètes rocheuses autour d’étoiles proches, semblables à notre Soleil. Sélectionnée par l’Agence Spatiale Européenne (ESA) en 2014, la mission était en préparation et son adoption clôt la phase d’étude et donne le feu vert à la phase de réalisation des instruments. Par suite, dans les prochains mois, un appel d’offre va être lancé pour la fourniture de la plate-forme spatiale sur laquelle sera placé le télescope et ses instruments. PLATO sera lancé en 2026, et il sera placé à près de 1,5 million de km de la Terre. Le satellite surveillera des dizaines de milliers d'étoiles brillantes, recherchant des variations de lumière de quelques dix millièmes, et périodiques, signes du passage d’une planète devant le disque de leur étoile.

20 septembre 2017

Début août 2017, le dipôle FRESCA2, conçu et réalisé en collaboration entre l’Irfu et le CERN, a atteint le champ de 13,3 T au centre de l’ouverture de 100 mm lors des tests effectués dans la station d’essai HFM au CERN. C’est un nouveau record mondial, avec une énergie stockée de 3 MJ/m et des forces mécaniques jamais atteintes dans ce type d’aimant. Cet électroaimant a été étudié pour donner une homogénéité de champ magnétique de l’ordre du pourcent sur une longueur de 540 mm.

Lors d’un premier refroidissement à 1,9 K, l’aimant dipôle FRESCA2b a atteint un champ de 13,04 T à 10,6 kA après deux quenchs [1] et ce champ a été maintenu dans l’aimant pendant une heure. Si seulement deux essais ont pu être réalisés à 4,5 K, compte-tenu du temps disponible, ils ont montré deux quenchs à des valeurs très proches du champ nominal (12,98 T). Après un cycle thermique (remontée à la température de 280 K et deuxième refroidissement à 1,9 K), l’aimant a atteint le champ de 13,3 T à 10,85 kA sans quench additionnel. Cette valeur correspond à 71 % de la valeur maximale atteignable sur la ligne de charge de l’aimant. A 13 T, l’aimant a montré un fonctionnement stable pendant quatre heures. La station de test est à présent en maintenance, et les tests devraient reprendre en octobre pour explorer les limites d’opération du nouvel aimant.

13 juillet 2017
Le secret des cycles magnétiques des étoiles

Grâce à de nouvelles simulations numériques, une équipe scientifique animée par des chercheurs du Département d'Astrophysique-Laboratoire AIM du CEA-Irfu est parvenue à expliquer pourquoi le champ magnétique du Soleil se renverse tous les 11 ans. Les scientifiques ont mis en évidence l’existence d’une rétroaction forte entre le champ magnétique de l’étoile et son profil de rotation interne, dont les modulations temporelles déterminent ultimement la période du cycle. Cette découverte majeure quant à la compréhension de l’origine du champ magnétique des étoiles est publiée le 14 juillet 2017 dans la revue Science.

Voir la vidéo :   Le cycle magnétique du Soleil en réalité virtuelle (CEA Astrophysique)

19 janvier 2017
La couronne et le vent d’étoiles de type solaire dévoilés grâce à des simulations numériques 3D

Au sein d’une équipe franco-canadienne, des chercheurs du Service d’Astrophysique/Laboratoire AIM du CEA-Irfu  ont étudié l'évolution au cours du temps du vent stellaire d’étoiles voisines du Soleil.  Basé sur des simulations numériques 3D sur des ordinateurs massivement parallèles du GENCI couplé à des observations, l’étude sur un  échantillon d’étoiles d’âge compris entre 25 millions d’années et 4.5 milliards d’années (l’âge du Soleil) a permis de suivre comment le vent stellaire, son intensité et sa distribution de vitesses évolue au cours du temps. Ces travaux sont notamment basés sur les contraintes imposées par les mesures du champ magnétique de surface des étoiles obtenues par des observations en mode de spectropolarimétrie. Ils conduisent en particulier à établir une loi de distribution de vitesse du vent stellaire en fonction de l’âge de l’étoile. Ces travaux sont publiés dans la revue The Astrophysical Journal, décembre 2016.

26 mars 2017

Le projet européen E-Xfel (European X-ray Free Electron Laser) vient de passer un cap important : la mise en place de l’ensemble des modules servant à l’accélération des électrons et les premiers tests de fonctionnement. C’est l’aboutissement de 10 années de travail fourni par l’Irfu qui a livré 103 cryomodules après leur intégration au sein de l’infrastructure dédiée du Village XFEL à Saclay. Ces derniers ont passé les tests affichant une performance excellente. L’ensemble de l’accélérateur d’un kilomètre et demi est maintenant installé et prêt à fonctionner à sa température opérationnelle de 2K. Un premier faisceau d’électrons a été accéléré sur un tronçon des 17 premiers cryomodules puis a parcouru l’ensemble de l’accélérateur linéaire.

12 avril 2017

Une expérience menée au Ganil (Grand accélérateur national d’ions lourds) a mis en évidence la forme sphérique du Krypton-96, remarquable en comparaison de la forme très allongée du Rubidium-97, qui compte seulement un proton de plus. Ce changement de forme radical et soudain donne aux physiciens de précieux indices sur l’organisation et la force de liaison entre les neutrons et protons qui constituent le noyau. Ce travail de recherche fait l’objet d’une publication dans la revue Physics Review Letters.

25 avril 2017

Dans un article publié aujourd’hui dans la revue Nature Physics, la collaboration Alice rapporte que les collisions de protons présentent parfois des motifs similaires à ceux observés dans les collisions de noyaux lourds. Ce comportement a été remarqué lors de l’observation d’un nombre accru de hadrons dits "étranges" dans les collisions de protons où un grand nombre de particules sont créées.

 

Cette augmentation est une des caractéristiques habituelles de l’état de la matière sous forme de plasma de quarks et de gluons qui aurait existé pendant quelques microsecondes après le Big Bang. Selon Boris Hippolyte, qui a présidé le comité de revue interne à la Collaboration pour cette publication, il s’agit de vérifier si l’expérience ALICE n’est pas en train de mesurer les plus petites gouttes de plasma de quarks et de gluons jamais formées.

30 janvier 2017

Le plasma de quarks et de gluons (QGP) est un nouvel état très dense et chaud où les constituants les plus élémentaires de la matière (quarks et gluons) sont libérés des hadrons où ils se trouvent habituellement confinés. Ce milieu, analogue à celui par lequel l’Univers tout entier serait passé quelques microsecondes après le Big Bang, est créé lors des collisions d’ions lourds à haute énergie comme celles entre noyaux de plomb au LHC du Cern. Pour prouver l’existence de ce plasma et en étudier ses propriétés, les physiciens recherchent dans leurs données des particules rares composées d’une paire de quark charme avec son anti-quark (c-cbar), appelé le méson J/ψ . En présence du QGP, ces particules pourraient subir deux effets absents dans la matière froide (sans QGP) : une suppression de production (les paires c-cbar produites seront dissociées par le plasma) et une régénération (si les quarks c et cbar sont très nombreux, ils pourraient se recombiner et régénérer ainsi des nouveaux J/ψ dans le plasma). Ces deux effets opposés avaient déjà été observés avec les 1res données du LHC en 2012 mais avec une faible précision pour la recombinaison. Avec les données de la nouvelle campagne du LHC (2015-2018), la collaboration internationale Alice vient de publier dans la revue Physics Review Letters B les premiers résultats sur la production du J/ψ avec une bien meilleure précision et à une énergie de collision plus élevée (√(sNN) = 5.02 TeV au lieu de 2.76 TeV en 2012). L'effet de la recombinaison qui compense la suppression a été confirmé dans le mécanisme de production du J/ψ au LHC. L’équipe de l’Irfu membre d’Alice a coordonné  cette analyse et y a fortement contribué.

16 octobre 2017
La découverte d'un nouveau type d'onde gravitationnelle

A l'aide d'une panoplie de détecteurs développés avec la participation du CEA, les physiciens du CEA-Irfu ont scruté la région d'où est provenue l'onde gravitationnelle détectée le 17 août 2017 par les installations LIGO-VIRGO. A la différence des quatre détections précédentes d'ondes du même type découvertes depuis 2015, cette nouvelle vibration de l'espace,  baptisée GW170817, s'avère d'origine différente. Elle ne résulte pas de la fusion de deux trous noirs mais de deux étoiles les plus denses connues, les étoiles à neutrons.
Grâce au satellite INTEGRAL en orbite, les astrophysiciens du Département d'Astrophysique-Laboratoire AIM (CEA, CNRS, Univ Paris Diderot) ont pu montrer que l'onde GW170817 s'était accompagnée d'un sursaut gamma, brève bouffée de rayons gamma  émise juste 2 secondes après la fusion des deux astres. En pointant en un temps record un des télescopes géants du VLT (Chili), ils ont également participé à l'étude de l'émission de lumière visible qui a suivi la fusion, montrant notamment que cette lumière n'était pas polarisée.
Les physiciens du Département de Physique de Particules du CEA-Irfu ont également analysé les données obtenues par les experiences ANTARES pour la recherche de neutrinos et H.E.S.S. pour la recherche de rayons gamma de très hautes énergies, montrant que l'onde GW170817 n'avait pas fourni d'émission détectable.

L'étude de ce phénomène nouveau, jamais observé jusqu'ici directement, offre de nombreuses perspectives excitantes pour l'astrophysique comme la possibilité de mieux comprendre l'origine des éléments très lourds de l'Univers et même la capacité de mesurer de façon totalement indépendante le taux d'expansion de l'Univers.
L'ensemble de ces résultats exceptionnels est publié le 16 octobre 2017 dans une série d'articles présentés dans les revues Nature, Astrophysical Journal et Physical Review Letters.

09 novembre 2017

La collaboration Atlas a présenté au Cern, le 24 octobre 2017, des preuves de la production de bosons de Higgs en association avec une paire de quarks top et antitop, dans les données enregistrées en 2015 et 2016 à 13 TeV d’énergie de collision proton-proton. L’observation de ce processus rare, objet de recherches menées au sein du groupe « ttH », orchestré par un physicien de l’Irfu/DPhP, ouvre des perspectives quant à l’étude du mécanisme de Higgs via la mesure du couplage du quark top au boson de Higgs.

19 octobre 2017

Pour la première fois, les expériences Atlas et CMS cosignent un article, soumis à la revue JHEP, sur la physique du quark top. Ce travail collaboratif, dont les physiciens de l’Irfu ont été responsables pour la partie Atlas, consiste à combiner les mesures des deux expériences de ce qu’on appelle l’asymétrie de charge dans la production des paires de quarks top-antitop, Ac. En réduisant significativement l’erreur sur la mesure finale, ce travail permet de tester le phénomène subtil d’asymétrie prédit par le modèle standard de la physique des particules et l’éventuelle présence ténue de nouvelle physique.

16 août 2017

Des physiciens de l'expérience ATLAS, au CERN, ont observé le premier signe direct de la diffusion lumière-lumière à haute énergie, un processus très rare dans lequel deux photons (des particules de lumière) interagissent et changent de direction. Le résultat publié le 14 aout dans la revue Nature Physics confirme l'une des plus anciennes prédictions de l'électrodynamique quantique.

Les physiciens d'ATLAS vont continuer à étudier la diffusion lumière-lumière pendant la prochaine exploitation du LHC avec ions lourds, prévue pour 2018. Avec davantage de données, la précision du résultat sera encore meilleure, ce qui pourrait ouvrir de nouvelles perspectives pour les études sur la nouvelle physique

en savoir plus:

février 2017: le fait marquant Irfu de février 2017

14 aout 2017: le communique de presse du CERN

 

contact Irfu: Laurent SCHOEFFEL

07 juillet 2017

Du 5 au 12 juillet 2017, la communauté mondiale de physique des particules s’est réunie à Venise à l’occasion de la conférence EPS2017, occasion pour toutes les expériences LHC de présenter les  résultats  issus de l’exploitation des données fournies par le LHC à 13 TeV (de 2015 à 2016). Des physiciens du DPhP, experts en recherche d’hypothétiques particules de type « boson de Higgs » mais plus massifs, ont contribué aux résultats présentés. Leurs analyses nouvelles permettent d’améliorer la sensibilité aux Higgs lourds.

 

 

08 février 2017

La réaction à 4 photons :  γ+γ→γ+γ est théoriquement possible comme prédit dès 1936,  mais cette réaction a toujours été inaccessible malgré les dizaines de tentatives expérimentales. L’intérêt de mesurer son taux de réaction est qu’il est lié aux propriétés du vide quantique. C’est dans ce contexte que l’expérience Atlas a annoncé en 2016 sa première observation, obtenue avec des données enregistrées fin 2015 correspondant à environ 4 milliards de collisions de physique (toutes réactions confondues) en ions plomb contre plomb à 5 TeV. Un physicien de l’Irfu/SPP a dirigé l’équipe qui a réalisé cette mesure, dont la publication vient d'être soumise à Nature Physics.

 

10 juillet 2017

Plusieurs décennies après sa découverte, la nature de la matière noire reste une énigme. Récemment, des observations astrophysiques ont motivé de nouveaux modèles cosmologiques dits "matière noire tiède" et "matière noire ultra-légère", pour expliquer ses propriétés. Les spectres des quasars mesurés en particulier par les relevés BOSS auprès du télescope Sloan et XQ100 auprès du VLT ont permis aux chercheurs du DPhP de les tester. Leurs observations favorisent l'hypothèse d'une matière noire froide standard, et placent parmi les contraintes les plus fortes sur les masses de ces particules.

 

Les observations cosmologiques et astrophysiques démontrent l'existence d'une matière noire, source principale des forces de gravité qui produisent et soutiennent les grandes structures de l'univers. Malgré plusieurs décennies d'investigations, la nature de cette matière noire reste en revanche inconnue. En particulier aucune trace de particules de type WIMPs, longtemps évoquées, n'a été trouvée à ce jour que ce soit au LHC, dans les expériences de détection dite directe comme EDELWEISS, ou indirecte comme HESS. D'autres modèles de matière noire font donc l'objet d'attentions croissantes.

 

13 juin 2017

La première carte de distribution spatiale des structures de l’univers d’aujourd’hui à plus de 10 milliards d’années vient d’être révélée par les astronomes du programme Sloan Digital Sky Survey (SDSS). Pour remonter à cet âge lointain de l’Univers, les physiciens ont utilisé les sources les plus violentes de l’Univers : les quasars. Ils représentent les objets les plus lumineux et témoignent d'un lointain passé où l'Univers commençait à peine à se structurer après le Big Bang.
A partir de cette nouvelle carte, les chercheurs ont mesuré pour la 1ère fois les distances entre les structures de l’Univers tel qu’il était il y a plus de 6 milliards d’années. Les groupes français du CEA et du CNRS ont eu un rôle majeur dans cette mesure que ce soit concernant la sélection des quasars mais aussi l’analyse de près de 150 000 sources. Les observations continuent mais les résultats de cette nouvelle étude après 2 ans de prise de données confirment déjà le modèle standard de la cosmologie.

30 janvier 2017

L’instrument Desi (Dark Energy Spectroscopic Instrument) analysera la lumière émise par 35 millions de galaxies et quasars à plusieurs moments du passé de l’Univers et jusqu’à 11 milliards d’année, pour mieux cerner l’énergie noire. Son passage en phase de construction en 2016 couronne plusieurs années de recherche et développement qui ont abouti à un design solide et une stratégie d’observation crédible. L’Irfu, partenaire du projet depuis la première heure, y a tenu toute sa place. Retour sur une année qui a vu le projet devenir réalité.

Une nouvelle phase commence pour DESI

La phase de construction de DESI a été lancée l’été dernier après approbation par le département de l’énergie américain (DOE). Son installation auprès du télescope Mayall de 4 m (Fig. 1) situé à l’observatoire national Kitt Peak en Arizona commencera en 2018 avec l’arrivée du correcteur de champ.
 
La campagne d’observations, portant sur un tiers du ciel, débutera en 2019 et durera 5 ans. Elle devrait produire 10 fois plus de données que le projet précédent, BOSS (Baryon Oscillation Spectroscopic Survey) achevé il y a deux ans. Cette dernière phase d’approbation par le DOE permet de lancer la construction des pièces maîtresses de l’instrument. A savoir, les 5000 robots positionneurs de fibres (Fig. 2) qui permettront de pointer précisément les objets dont on veut capter la lumière - galaxies, quasars, étoiles - et les spectrographes alimentés par les fibres optiques qui analyseront la lumière recueillie en la décomposant en multiples longueurs d’ondes. 

14 septembre 2017

La sonde Cassini va terminer ce 15 septembre 2017 sa mission de plus de 13 ans autour de Saturne. A son bord, le plus petit instrument, un détecteur de seulement 5 milimètres de long, a été mis au point par le Departement  d'Astrophysique du CEA-Irfu qui en a assuré la réalisation en collaboration avec le CEA/Leti (Laboratoire d'électronique et des techniques de l'information). Ce détecteur, qui est au coeur du spectromètre infrarouge CIRS (Composite InfraRed Spectrometer" ou "Spectromètre Infrarouge Composite"),  a permis de mesurer la température des anneaux de Saturne avec une résolution inégalée et a permis de découvrir également de nombreuses molécules dans l'atmophère de Saturne et de son satellite Titan.

19 octobre 2017

Pour la première fois, les expériences Atlas et CMS cosignent un article, soumis à la revue JHEP, sur la physique du quark top. Ce travail collaboratif, dont les physiciens de l’Irfu ont été responsables pour la partie Atlas, consiste à combiner les mesures des deux expériences de ce qu’on appelle l’asymétrie de charge dans la production des paires de quarks top-antitop, Ac. En réduisant significativement l’erreur sur la mesure finale, ce travail permet de tester le phénomène subtil d’asymétrie prédit par le modèle standard de la physique des particules et l’éventuelle présence ténue de nouvelle physique.

20 septembre 2017

Début août 2017, le dipôle FRESCA2, conçu et réalisé en collaboration entre l’Irfu et le CERN, a atteint le champ de 13,3 T au centre de l’ouverture de 100 mm lors des tests effectués dans la station d’essai HFM au CERN. C’est un nouveau record mondial, avec une énergie stockée de 3 MJ/m et des forces mécaniques jamais atteintes dans ce type d’aimant. Cet électroaimant a été étudié pour donner une homogénéité de champ magnétique de l’ordre du pourcent sur une longueur de 540 mm.

Lors d’un premier refroidissement à 1,9 K, l’aimant dipôle FRESCA2b a atteint un champ de 13,04 T à 10,6 kA après deux quenchs [1] et ce champ a été maintenu dans l’aimant pendant une heure. Si seulement deux essais ont pu être réalisés à 4,5 K, compte-tenu du temps disponible, ils ont montré deux quenchs à des valeurs très proches du champ nominal (12,98 T). Après un cycle thermique (remontée à la température de 280 K et deuxième refroidissement à 1,9 K), l’aimant a atteint le champ de 13,3 T à 10,85 kA sans quench additionnel. Cette valeur correspond à 71 % de la valeur maximale atteignable sur la ligne de charge de l’aimant. A 13 T, l’aimant a montré un fonctionnement stable pendant quatre heures. La station de test est à présent en maintenance, et les tests devraient reprendre en octobre pour explorer les limites d’opération du nouvel aimant.

16 octobre 2017
La découverte d'un nouveau type d'onde gravitationnelle

A l'aide d'une panoplie de détecteurs développés avec la participation du CEA, les physiciens du CEA-Irfu ont scruté la région d'où est provenue l'onde gravitationnelle détectée le 17 août 2017 par les installations LIGO-VIRGO. A la différence des quatre détections précédentes d'ondes du même type découvertes depuis 2015, cette nouvelle vibration de l'espace,  baptisée GW170817, s'avère d'origine différente. Elle ne résulte pas de la fusion de deux trous noirs mais de deux étoiles les plus denses connues, les étoiles à neutrons.
Grâce au satellite INTEGRAL en orbite, les astrophysiciens du Département d'Astrophysique-Laboratoire AIM (CEA, CNRS, Univ Paris Diderot) ont pu montrer que l'onde GW170817 s'était accompagnée d'un sursaut gamma, brève bouffée de rayons gamma  émise juste 2 secondes après la fusion des deux astres. En pointant en un temps record un des télescopes géants du VLT (Chili), ils ont également participé à l'étude de l'émission de lumière visible qui a suivi la fusion, montrant notamment que cette lumière n'était pas polarisée.
Les physiciens du Département de Physique de Particules du CEA-Irfu ont également analysé les données obtenues par les experiences ANTARES pour la recherche de neutrinos et H.E.S.S. pour la recherche de rayons gamma de très hautes énergies, montrant que l'onde GW170817 n'avait pas fourni d'émission détectable.

L'étude de ce phénomène nouveau, jamais observé jusqu'ici directement, offre de nombreuses perspectives excitantes pour l'astrophysique comme la possibilité de mieux comprendre l'origine des éléments très lourds de l'Univers et même la capacité de mesurer de façon totalement indépendante le taux d'expansion de l'Univers.
L'ensemble de ces résultats exceptionnels est publié le 16 octobre 2017 dans une série d'articles présentés dans les revues Nature, Astrophysical Journal et Physical Review Letters.

01 mars 2017

Les quatre caméras des « petits » télescopes de l’observatoire H.E.S.S. ont vu leur électronique de lecture rajeunir de plus de 15 ans afin de rejoindre les performances du cinquième télescope, installé en 2012. Cette mise à niveau va permettre aux cinq télescopes de travailler de concert et d’optimiser l’identification des photons de hautes énergies du cosmos. L’opération de jouvence, démarrée en 2013, a permis  l’installation des 4 caméras durant l’été dernier  pour aboutir, en janvier 2017, à une première observation simultanée d’une première source gamma. La mise en service de ces caméras aux performances et à la fiabilité améliorées laisse présager une belle moisson de nouveaux résultats scientifiques pour H.E.S.S. qui représente 1/4 des télescopes gammas en fonctionnement dans le monde. Ce succès a aussi validé l’utilisation de la puce NECTAr, conçue par l’Irfu pour équiper une quinzaine de caméras du futur observatoire CTA dont l’installation débutera en 2018.

 

Après douze ans de bons et loyaux services dans l’environnement poussiéreux et hostile des hauts plateaux namibiens, quatre des cinq caméras de l’expérience H.E.S.S devaient être remplacées. Ces quatre caméras installées en 2005 par des équipes du CNRS/IN2P3 et du CEA/Irfu, ont été à l’origine de la découverte de plus de 100 objets astrophysiques qui émettent des photons de très haute énergie (au-delà de quelques dizaines de GeV), de l’élaboration de la première carte en 2004 du plan galactique (voir l’image à la fin du texte) à ces énergies, de la découverte d’une source de rayons cosmiques au PeV (1015 eV) et de bien d’autres observations.

16 octobre 2017
La découverte d'un nouveau type d'onde gravitationnelle

A l'aide d'une panoplie de détecteurs développés avec la participation du CEA, les physiciens du CEA-Irfu ont scruté la région d'où est provenue l'onde gravitationnelle détectée le 17 août 2017 par les installations LIGO-VIRGO. A la différence des quatre détections précédentes d'ondes du même type découvertes depuis 2015, cette nouvelle vibration de l'espace,  baptisée GW170817, s'avère d'origine différente. Elle ne résulte pas de la fusion de deux trous noirs mais de deux étoiles les plus denses connues, les étoiles à neutrons.
Grâce au satellite INTEGRAL en orbite, les astrophysiciens du Département d'Astrophysique-Laboratoire AIM (CEA, CNRS, Univ Paris Diderot) ont pu montrer que l'onde GW170817 s'était accompagnée d'un sursaut gamma, brève bouffée de rayons gamma  émise juste 2 secondes après la fusion des deux astres. En pointant en un temps record un des télescopes géants du VLT (Chili), ils ont également participé à l'étude de l'émission de lumière visible qui a suivi la fusion, montrant notamment que cette lumière n'était pas polarisée.
Les physiciens du Département de Physique de Particules du CEA-Irfu ont également analysé les données obtenues par les experiences ANTARES pour la recherche de neutrinos et H.E.S.S. pour la recherche de rayons gamma de très hautes énergies, montrant que l'onde GW170817 n'avait pas fourni d'émission détectable.

L'étude de ce phénomène nouveau, jamais observé jusqu'ici directement, offre de nombreuses perspectives excitantes pour l'astrophysique comme la possibilité de mieux comprendre l'origine des éléments très lourds de l'Univers et même la capacité de mesurer de façon totalement indépendante le taux d'expansion de l'Univers.
L'ensemble de ces résultats exceptionnels est publié le 16 octobre 2017 dans une série d'articles présentés dans les revues Nature, Astrophysical Journal et Physical Review Letters.

29 novembre 2017

Après une sélection sévère, les premières cibles d'observation du télescope spatial James Webb (JWST) qui doit être lancé au printemps 2019, viennent d'être dévoilées.  Sur les 200 déclarations d’intention initialement envoyées par des chercheurs du monde entier, seulement 13 programmes ont été retenus au titre des "Premières publications scientifiques (ERS pour Early Release Science). Parmi eux, deux programmes auxquels participe le CEA. Ces observations auront lieu au cours des cinq premiers mois des opérations scientifiques du JWST, après une période de mise en service de six mois.

20 novembre 2017

Alors que le James Webb Space Telescope (JWST) sort de la plus grande cuve cryogénique du monde, une étape cruciale pour le télescope et ses instruments a été franchie avec la réussite des tests cryogéniques. Au sein d’un consortium international, la France, en particulier le CEA/Irfu, le CNRS et le CNES, a joué un rôle clé pour fournir au successeur de Hubble et Spitzer son imageur infrarouge MIRIM, lui permettant d’obtenir des images dans une gamme de 5 à 28 microns de longueur d’onde.

14 novembre 2017

Les physiciens de la collaboration Compass au Cern, dont fait partie une équipe de l’Irfu, viennent de publier les résultats d’une mesure sur la structure en quarks du proton [1] pour le moins originale. Cette mesure, attendue depuis longtemps, tend à confirmer l’une des prédictions de la théorie de l’interaction forte, la Chromodynamique Quantique (QCD). En effet, d’après la QCD, une prédiction appelée « factorisation », stipule que la réaction complexe entre deux particules lors d’une collision nucléaire de suffisamment grande énergie peut être séparée en deux contributions : l’interaction elle-même et les fonctions de distribution des quarks à l’intérieur des particules en interaction. Pour examiner le concept de factorisation, les expérimentateurs ont mesuré une même quantité physique, appelée asymétrie, mais en employant deux processus différents : avec un faisceau de muons en premier lieu et avec un faisceau de pions ensuite.  Le résultat est original car paradoxalement, pour confirmer les prédictions de la QCD, les deux expériences doivent fournir des résultats de signes opposés.

14 juin 2017

Sous la responsabilité de physiciens du CEA Irfu et de RIKEN (Japon), une collaboration internationale des équipes de RIKEN RIBF, de l'Irfu (SPhN, SACM, SEDI) et d'autres groupes européens dont l'IPNO a réalisé la première spectroscopie des isotopes très riches en neutrons 98,100Kr. L’expérience met en évidence qu’à basse énergie d’excitation du noyau de 98Kr, deux configurations différentes coexistent à des énergies très proches. La compétition entre ces deux configurations, représentées par des formes différentes, se traduit par une transition brutale d’une forme à l’autre pour l’état fondamental des chaînes isotopiques Rb, Sr et Zr à partir du 60e neutron. Dans cette expérience, on observe au contraire une transition plus progressive pour les isotopes de Kr en fonction du nombre de neutrons. Cette étude est un pas décisif vers la compréhension des limites de cette région de transition de phase quantique. Les résultats sont publiés dans la revue Physical Review Letters [PRL 118, 242501 (2017)].

24 janvier 2017

Une équipe internationale menée par l’Irfu et RIKEN (Japon) a conçu et conduit une expérience pour réaliser la première mesure de la spectroscopie du 110Zr. C’est un noyau clef pour comprendre la structure des noyaux les plus exotiques et la genèse des éléments lourds dans l’univers. Les résultats seront publiés en Janvier 2017 dans Physical Review Letters, et distingués comme “suggestion de l'éditeur”. Les scientifiques franchissent ainsi une nouvelle étape dans la compréhension des manifestations de l’interaction nucléaire.

31 octobre 2017

La collaboration ScanPyramids a découvert un nouveau vide au cœur de la pyramide de Kheops. Ce grand vide a été détecté par des techniques d’imagerie muoniques menées par trois équipes distinctes de l'Université de Nagoya (Japon), du KEK (Japon) et du CEA/Irfu. C’est la 1ère découverte d'une structure interne majeure de Kheops depuis le Moyen-Age

De dimensions proches de celle de la grande galerie, structure architecturale située au cœur de la grande pyramide (47m de long, 8m de haut), cette nouvelle cavité, baptisée ScanPyramids Big Void, a une longueur minimale de 30 mètres. Observée pour la première fois avec des films à émulsion nucléaire installés dans la chambre de la Reine (Université de Nagoya), puis détectée avec un télescope de scintillateurs installé dans la même chambre (KEK), elle a été confirmée avec des détecteurs gazeux, Micromegas, situés eux à l’extérieur de la pyramide (CEA) ), et donc avec un angle de vue très différent permettant d’affiner la localisation de ce vide. C’est la première fois qu'un instrument détecte depuis l’extérieur une cavité située au plus profond d’une pyramide.

Ces résultats ont été publiés par l'équipe ScanPyramids le 2 novembre 2017 dans le journal Nature.

03 août 2017

La collaboration internationale T2K, dans laquelle l’Irfu est fortement impliqué, annonce le 4 août 2017 de nouvelles indications d'une violation de la symétrie entre les neutrinos et les antineutrinos. T2K a analysé les données recueillies depuis 2010 jusqu'en 2017 : leurs nouveaux résultats, combinés avec les mesures d'oscillations de neutrinos de réacteurs, excluent que les neutrinos et les antineutrinos aient la même probabilité d'oscillations de saveur avec un niveau de confiance de 95% (2 écarts-type). Ce qui revient à dire qu’il y a 1 chance sur 20 que cette violation soit due à une fluctuation statistique. Après des améliorations sur le détecteur proche, en grande partie conçues et réalisées par l’Irfu, une nouvelle phase de prise de données (T2K-2) est prévue de 2021 à 2026, qui pourrait établir la violation de la symétrie CP à 3 écarts-type (99,7% de niveau de confiance).

 

 

11 février 2017
Gargantua au pays des trous noirs

Un trou noir géant a détruit une étoile et a ensuite ingurgité ses restes pendant environ une décennie, selon les astronomes. C'est plus de dix fois plus long que tous les évènement analogues observés jusque ici.
Une équipe intenationale de chercheurs, incluant un astrophysicien du Service d'Astrophysique-Laboratoire AIM du CEA-Irfu, a fait cette découverte étonnante en utilisant des données des trois satellites, Chandra X-ray Observatory (NASA), SWift (NASA) ainsi que XMM-Newton (ESA). Les résultats de cette étude sont à paraitre dans la revue Nature Astronomy.

 

 

Retour en haut