26 juin 2015

 

L’Observatoire de Paris, le CNRS, le CEA et la Région Île-de-France ont inauguré, le 24 juin 2015, la plateforme GAmma-ray Telescope Elements (GATE) sur le site de Meudon de l’Observatoire de Paris, pour l’exploration de l’Univers.

L’inauguration de cette plateforme représente une étape importante du projet de futur réseau de télescopes Cherenkov Telescope Array (CTA). Regroupant 31 pays, 200 instituts de recherche et plus de 1200 scientifiques, le programme international CTA devrait permettre de mieux comprendre les phénomènes extrêmes de l’Univers.

Dans ce contexte, l’initiative GATE, portée par l’Observatoire de Paris et cofinancée par la Région Île-de-France (appel d’offre SESAME), le CNRS et le CEA, a pour objectif l’étude de concepts et le développement de prototypes d’instruments nécessaires à la mise en place du réseau CTA.

Aujourd’hui, les instruments conçus dans le cadre de GATE sont terminés. Il s’agit notamment de prototypes d’éléments, télescopes et caméras, qui pourront constituer une partie de l’infrastructure CTA. Après tests et évaluations, la prochaine étape sera d’optimiser les prototypes, les performances, les coûts et les procédés d’industrialisation. S’en suivra la construction des « premiers de série » qui pourront être installés sur les deux sites de CTA à l’horizon 2017.

27 novembre 2015

En novembre, les pièces du puzzle de l'aimant du projet Iseult s'assemblent. Le 6 novembre, à Belfort au sein des usines Alstom, a eu lieu l'assemblage délicat de la structure soutenant les aimants de blindage (30 tonnes) autour de l'aimant principal (80 tonnes). Ces deux grosses pièces consituent l'enceinte hélium qui sera alimentée par son satellite cryogénique. Cette dernière pièce a été installée le 16 novembre dans la salle qui hébergera l'aimant à Neurospin. Un ensemble complexe pour assurer un fonctionnement  sous champ 24h/24h avec un automate haute fiabilité est dès à présent en cours d'intégration et de test.

L'arrivée de l'aimant à Neurospin est prévu pour le printemps 2016 après 40 jours de voyage, véritable périple pour ce colis de 130 tonnes qui utilisera 3 modes de transport: camion, péniche et bateau.

 

28 octobre 2015

12 cryomodules, consitutés chacun d'une cavité accélératrice en matériau supraconducteur et de son systéme de cryogénie, sont désormais en cours d’installation sur l’accélérateur linéaire de particules  Spiral2 au Ganil (Caen).

Entre sprint et marathon, l’équipée constituée de 60 collaborateurs du SEDI, SACM et SIS, ont mené ce projet commencé en 2005, de sa conception à sa phase de qualification après assemblage. Sur la ligne d’arrivée, 12 cryomodules en tous points conformes au cahier des charges : champ accélérateur supérieur à 6.5 MV/m pour des pertes thermiques inférieures à 21.5W. Leur mise en en froid est prévue au premier semestre 2016, année de mise en service de Spiral2. Ce dernier permettra de produire des ions radioactifs accélérés, afin d’étudier la structure nucléaire des ions exotiques.

 

31 août 2015

 

Dans le cadre du projet E-XFEL (European X-ray Free Electron Laser) , l'Irfu participe à la construction d'un accélérateur supraconducteur en Allemagne (laboratoire DESY) en intégrant et testant les cryomodules. Le cap de 60 cryomodules, sur un total de 103, a été franchi le 26 août 2015 grâce à une cadence d’intégration de 4 jours par module. L‘expédition du 103ème cryomodule est prévue fin avril 2016. Le délai est respecté et les performances des modules sont excellentes: sur les 55 modules testés, le gradient accélérateur atteint en moyenne 27,4 MV/m, soit 16% de plus que la spécification. 33 cryomodules, sur un total de 101, sont déjà installés dans le tunnel de l’accélérateur linéaire à électrons de 1,5 km de long.

14 septembre 2015

Les physiciens de l'expérience Compass au CERN, dont fait partie une équipe de l'Irfu, ont observé une particule inattendue, appelée a1(1420). L'article annonçant cette découverte vient d'être publié dans Physical Review Letters [1]. D'après ses propriétés - masse et nombres quantiques - la nouvelle particule fait partie de la famille des mésons. Comme tous les membres de sa famille, le nouveau méson est une particule composite, constituée des briques réellement élémentaires que sont les quarks. Toutes les particules observées jusqu'ici pouvaient être expliquées par des combinaisons à deux ou trois quarks. Or, les caractéristiques du nouveau méson a1(1420) découvert par Compass ne sont pas compatibles avec une structure en deux quarks: c'est ce qui intrigue les scientifiques de la physique hadronique.

[1] Publication: C. Adolph et al., (COMPASS Collaboration) Physical Review Letters 115, 082001 (2015).  

14 avril 2015

Rétroconcevoir un hadron, c’est analyser sa structure en quarks et gluons pour exhiber les mécanismes de l’interaction forte. Du fait des créations de paires de particules à toutes les échelles de temps et de distance, le nombre de quarks et de gluons dans les hadrons est variable et arbitrairement élevé. Leur structure est donc décrite statistiquement en termes de distributions. Les Distributions de Partons Généralisées sont celles d’intérêt expérimental actuel qui contiennent l’information la plus riche. Des théoriciens de l’Irfu viennent de les modéliser au moyen de degrés de liberté effectifs construits de manière mathématiquement cohérente à partir des quarks et gluons de QCD. Ces travaux sont publiés dans la prestigieuse revue Physics Letters B (Phys. Lett. B737 (2014) 23 et Phys. Lett. B741 (2015) 190) et concernent pour l’heure le plus léger des hadrons, le pion. Ils seront suivis de la description du proton.

02 novembre 2015

Les noyaux « exotiques » lancent le défi d’une description universelle de la structure nucléaire et soulèvent la question de l’origine de l’évolution de la structure en couches de noyaux. Une équipe de l’Irfu a développé le projet MINOS (Magic Number Off Stability) visant à répondre à ces questions. Un programme de physique a été établi en collaboration avec des équipes japonaises de RIKEN dont le RIBF (Radioactive Isotope Beam Factory) est l’accélérateur le plus performant mondialement pour produire des noyaux riches en neutrons à des énergies intermédiaires de plusieurs centaines de MeV. Les expériences avec le détecteur MINOS ont débutées en 2014 et leurs premiers résultats viennent d’être publiés dans Physical Review Letters couronnant 5 années d’efforts et ouvrant la voie à une moisson de résultats passionnants dans les années à venir.

02 décembre 2015

Un nouveau détecteur Micromegas vient d’être développé à l’Irfu : pour la première fois, la micro?grille et l’anode sont segmentées en pistes, dans des directions perpendiculaires. Ce détecteur offre ainsi une vraie structure 2D pour la reconstruction des trajectoires des particules chargées. De plus, ayant une masse très faible, il est parfaitement adapté à des mesures en faisceau de neutrons moyennant l’utilisation d’un convertisseur. Le détecteur a été testé avec succès et est dorénavant utilisé comme profileur transparent du faisceau de neutrons de l’expérience n_TOF au CERN.

27 novembre 2015

Le dipôle supraconducteur de grande acceptance R3B-Glad est destiné à l’analyse des réactions de faisceaux d’ions lourds radioactifs relativistes et sera installé sur le futur accélérateur FAIR (GSI). Il a été conçu à l’Irfu entre 2005 et 2008; les ingénieurs et techniciens de l’institut avaient aussi la responsabilité de tester ses performances à sa température de fonctionnement à 4,5 K. Après plus de 18 mois d'essais, l’aimant a atteint son courant nominal en décembre 2013. En 2014, ce gros papillon de 22 tonnes a été installé dans son habitacle : un cryostat de 37 tonnes. L’ensemble de 59 tonnes a rejoint l’accélérateur de GSI début novembre 2015, pour sa réception en 2016 et ses premières expériences en 2017.

 

Retour en haut