Contribution à l'étude des propriétés thermiques et hydrodynamiques d'un écoulement d'hélium normal (He I) diphasique en circulation naturelle pour le refroidissement des aimants supraconducteurs
 
CEA DSM/DAPNIA/SACM
Vendredi 29/06/2007, 10:00
INSTN, CEA Paris-Saclay

La méthode de refroidissement basée sur le principe thermosiphon présente un grand intérêt en raison de sa simplicité, de sa nature passive et de son coût faible. Elle est adoptée pour le refroidissement à 4,5 K de l’aimant supraconducteur du détecteur de particules CMS auprès du LHC en construction au CERN à Genève. Cet aimant est composé de cinq modules dont chacun est refroidi indirectement via un réseau de tubes en aluminium soudés sur la surface externe du mandrin cylindrique de l’aimant. Le travail présenté dans cette thèse étudie expérimentalement les propriétés thermiques et hydrodynamiques d’un écoulement d’He I diphasique en circulation naturelle. Le dispositif expérimental utilisé consiste en une boucle thermosiphon monobranche composée principalement d’un séparateur de phases, d’un tube descendant et d’une section d’essai. Les expériences ont été réalisées en faisant varier plusieurs paramètres tels que le diamètre des sections d’essai (10 mm ou 14 mm) et le flux de chaleur allant jusqu’à l’apparition de la crise d’ébullition. Ces expériences ont permis de déterminer les lois d’évolution des différentes grandeurs caractérisant l’écoulement (le débit massique de circulation, le débit massique vapeur, le titre massique, le coefficient de friction et le coefficient d’échange thermique) en fonction de la densité du flux de chaleur appliquée. Au regard des résultats thermiques et hydrodynamiques obtenus, nous discutons la validité des différents modèles classiques existants dans la littérature. Nous montrons que le modèle homogène est le modèle le mieux adapté pour prédire les propriétés hydrodynamiques de ce type d’écoulement dans la gamme de titre massique 0≤x≤30%. De plus, nous proposons deux modèles pour la prédiction du coefficient de transfert de chaleur diphasique et la densité de flux de chaleur critique. Le premier considère que les effets de la convection forcée et de l’ébullition nucléée agissent simultanément et contribuent au transfert de chaleur. Le deuxième corrèle la densité de flux de chaleur critique mesurée en fonction du rapport altitude sur diamètre.

Contact : rverstee

 

Retour en haut