3 4

1

²**Global circulation as the main source of cloud activity on Titan**

- Sébastien Rodriguez^{1,2}, Stéphane Le Mouélic^{1,3}, Pascal Rannou^{4,5}, Gabriel Tobie^{1,3}, Kevin H. Baines⁶, 6 Jason W. Barnes⁷, Caitlin A. Griffith⁸, Mathieu Hirtzig⁹, Karly M. Pitman⁶, Christophe Sotin^{1,6}, Robert 7 H. Brown⁸, Bonnie J. Buratti⁶, Roger N. Clark¹⁰, Phil D. Nicholson¹¹
- 8

¹ Laboratoire de Planétologie et Géodynamique, Université de Nantes, France.² Laboratoire AIM, 10 *Université Paris 7, CNRS UMR-7158, CEA-Saclay/DSM/IRFU/SAp, France.* ³ CNRS, UMR-6112, 11 *France.⁴* Groupe de Spectrométrie Moléculaire et Atmosphérique, CNRS UMR-6089, Université de *Reims Champagne-Ardenne, France. ⁵* ¹²*LATMOS, CNRS UMR-7620, Université Versailles-St-Quentin, France. 6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. 7* ¹³*NASA* 14 Ames Research Center M/S 244-30, Moffett Field, CA 94035.⁸ Lunar and Planetary Laboratory, Uni-15 versity of Arizona, Tucson, AZ, USA. ⁹ AOSS, PSL, University of Michigan, Ann Arbor, MI, USA. ¹⁰ 16 *USGS, Denver Federal Center, Denver, CO, USA.* ¹¹ Cornell University, Astronomy Department, Itha-17 *ca, NY, USA.*

18

20

¹⁹**Manuscript 2008-11-12358A**

Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by the atmosphere circulation1-4 ²²**. At present time, cloud activity mainly occurs in the south (summer) hemisphere, arising near the pole⁵⁻¹² and at mid-latitudes^{7,8,13-15} from cumulus updrafts triggered by surface heating and/or local methane sources, and at the** 25 north (winter) pole^{16,17}, resulting from the subsidence and condensation of ethane-rich air into 26 the colder troposphere. General Circulation Models¹⁻³ predict that this distribution should seaso-**nally change moving from an hemisphere to another on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (~40°) in the winter hemisphere²** ²⁹**. The models, however, have hitherto been poorly constrained and their long-term predic-tions have not been observationally verified yet. Here we report that the global spatial cloud cov-erage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at ~40°N latitude and the persis-tence of the southern clouds while the southern summer is ending are, however, both in contra-diction with models predictions. This suggests that Titan's equator-to-pole thermal contrast is overestimated in the models and that Titan's atmosphere responds to the seasonal forcing with a greater inertia than expected.**

37

38 The Visual and Infrared Mapping Spectrometer¹⁸ (VIMS) onboard Cassini provides a unique oppor-39 tunity to regularly and accurately chart cloud activity from a close vantage point, hence with high spa-40 tial resolution and good spectral coverage. We developed a semi-automated algorithm to isolate clouds 41 from other contributions in VIMS images (cf. Fig. 1) and applied it to 10,000 images of Titan. These 42 images encompass several millions of spectra, acquired during 39 monthly flybys of Titan between Ju-43 ly 2004 and December 2007.

44

45 The total distribution of cloud events derived from our detections (Fig. 2) and the time variation of 46 their latitudinal distribution (Fig. 3a) indicates that cloud activity is clustered at three distinct latitudes 47 during the 2004-2007 period: the south polar region (poleward of 60°S), the north polar region (pole-48 ward of 50°N), and a narrow belt centered at ~40°S. Individual detection maps are provided for each 49 flyby in the online supplementary information materials (Fig. S1 to S4).

50

51 Our study clearly shows the stability of the north polar cloud, which is systematically detected over 52 the 2004-2007 period. We observe this extensive meteorological system poleward of 50-60°N. All of 53 these clouds spectrally differ from the southern clouds, which are presumably formed by wet convection and made of large, tens of microns in size, liquid/solid methane droplets^{2,16}. They produce much 55 less signal at 5-µm than any other cloudy features we detect elsewhere on Titan, indicating a lower 56 backscattering at 5-µm. Given that complex indices of refraction of methane and ethane are not that 57 different at this wavelength, the difference in backscattering comes essentially from the particle size. A 58 realtive lower backscattering at 5-µm is consistent with north polar clouds composed of smaller, micron-sized, particles more probably made of solid ethane^{2,16,17}. We also detect small elongated clouds at $60 - 60-70$ °N in March and April 2007. Surrounded by the large north polar ethane cloud, these clouds are 61 thought to be convective methane clouds connected to the underlying lakes¹⁹. Their higher brightness 62 at 5-µm confirms that they are similar to the methane clouds found in the southern hemisphere.

63

64 A few tropical clouds, thought to be rare during Titan's summer, are detected close to the equator $(-15^{\circ}S)$ on 12 December 2006. Their areas never exceed 10,000 km². These clouds were therefore un-66 detectable from ground-based observations. More details about tropical clouds are given in ref. (20). 67 We also observe more than one hundred isolated and transient temperate clouds near 40°S (Fig. 2 and $3a$). Most of them are elongated in the east-west direction, as was previously reported^{7,8,13-15}, possibly 69 due to orographic waves over zonally oriented topography and/or shearing and stretching by strong zonal winds of tens of meter per second⁷. This type of clouds appeared during two periods, in 2004 and 71 then regularly (on the two-thirds of the flybys) between July 2006 and October 2007. Between Decem-72 ber 2004 and August 2006, temperate clouds have been observed very rarely (only in October 2005 73 (ref. 10) and January 2006 (this study)). This could be attributed to the combination of less frequent 74 Titan's flybys by Cassini and/or a momentary decline in cloud activity.

75

76 Our latitudinal and time distribution of clouds (Fig.3a) is compared with predictions of the atmos-77 pheric Global Circulation Model from ref. (2) (IPSL-TGCM) which is, up to date, the only one to in-78 clude a microphysical cloud scheme and thus predict the cloud cover (see Fig. 3b). Except for the lack 79 of winter mid-latitude clouds (40°N), we find that the main spatial characteristics of our cloud distribu-80 tion are well reproduced by the IPSL-TGCM. Clouds appear in the model near 12 km altitude around 81 40° in the summer hemisphere (the southern hemisphere until 2009), associated to the ascending motion of the convergence zone of a Hadley-type cell¹⁻³. Clouds are also predicted very near the summer 83 pole (actual southern) where methane, driven from the warmer region below, condenses generating sa convective structures^{2,21-23}. In the winter polar region, the cloud formation is related to the downwel-85 ling stratospheric circulation, which drives an ethane and aerosol enriched stratospheric air into the 86 cold tropopause of the polar night (above 40 km). The observed stability of the north polar clouds is 87 interpreted, with the IPSL-TGCM, as the result of a constant incoming flux of ethane and aerosols from the stratosphere²⁴, producing a mist of micron-sized droplets of ethane and other products which slowly 89 settles. However, present observations do not confirm the ~40°N clouds predicted by the IPSL-TGCM. 90 In the model, these clouds should result from the horizontal diffusive transport by inertial instabilities 91 of air, partially humid (RH=50%) in tropical regions, toward the colder north pole. At the altitude 12 92 km, where these clouds are formed, the model predicts $T_{80°N} - T_{0°} = -4K$. Such a contrast makes the air 93 to become saturated and to produce clouds around 40°N. The lack of such clouds in observations could 94 be explained by an actual equator to pole temperature contrast $T_{80°N}$ - $T_{0°}$ of about -1.5K instead of the -

95 4K as predicted by the IPSL-TGCM. Such a small thermal contrast would allow air parcels with 96 RH=50% in tropical regions to move toward the pole without condensing. Conversely, it could also 97 enable the north polar region (where lakes are observed), saturated in methane, to wet the tropical re-98 gions up to 50% humidity. If we consider the conditions at the surface, computations, including phase 99 equilibrium with N₂-CH₄ mixture, show that with an equator-to-pole contrast near the ground of $-4.2K$ 100 (instead of -6.5K in the IPSL-TGCM), an air parcel at methane saturation near the pole (fed by lakes) 101 would be at 50% humidity if transported at tropics. Only 80% humidity would be needed at the north pole if the temperature contrast at surface drops to -3 K, which is actually observed²⁵.

103

104 By contrast, the timing of the summer-hemisphere clouds as constrained by our observations is 105 poorly reproduced by the IPSL-TGCM. Fig. 3b shows that the southern cloud activity should gradually 106 decrease as the equinox approaches, as a consequence of a progressive change in the south polar circu-107 lation pattern. This forecasted decline of southern meteorological activity is not supported by our data. 108 According to the IPSL-TGCM, the south polar clouds should have disappeared in mid-2005 and the 109 mid-latitudes clouds should have progressively faded out since 2005, whereas in our observations the 110 southern clouds are still present even late in 2007 and are particularly active at 40°S until mid-2007. 111 The significant latency to the predicted disappearance of summer clouds suggests that the response of 112 Titan's atmosphere to seasonal forcing presents certainly a greater inertia than expected. Yet, since 113 August 2007, south polar clouds' occurrences seemed to be less frequent in our data and the mid-114 latitude clouds seemed to be scarcer. These very subtle declining trends may indicate that we are wit-115 nessing the forthcoming seasonal circulation turnover as we approach the equinox, but with a different 116 timing pattern than forecasted by the IPSL-TGCM.

117

118 Fig. 4 shows that, between July 2004 and December 2007, the mid-latitude clouds are not uniformly 119 distributed in longitude, as already noticed during previous ground-based observations¹⁴ (December

120 2003-February 2005). The clouds' propensity for 0° longitude found in 2003-2005 was attributed to localized geological forcings from the surface possibly related to an active cryovolcanic province¹⁴. 122 Yet, three years later, our distribution differs markedly, showing more structures (Fig. 4c). Contrary to 123 ref. (14), we observe mid-latitudes clouds at almost all longitudes with an excess at longitudes (from 124 60°E to 180°E corresponding to the leading hemisphere of Titan) where ref. (14) detected none. The 125 strong clouds' density peak, along with the secondary bump, both reported by ref. (14) have drifted 126 eastward by 30 $^{\circ}$ with an estimated rate of \sim 10 $^{\circ}$ by terrestrial year. In addition, we found two troughs at 127 longitudes facing Saturn (0°) and anti-Saturn (180°). Though the strong link of the clouds to the latitude indicates that global circulation plays a major role in their formation¹⁻³, the way pattern of our 129 clouds' distribution suggests a secondary forcing mechanism. The 30° longitude shift in the cloud dis-130 tribution between the periods 2003-2004 (ref. 14) and 2005-2007 (this study), as well as the loose cor-131 relation of clouds with surface location, exclude surface geological activity as the primary triggering 132 mechanism. Both the drift in longitude and the discovery of two diametrically opposite minima rather 133 favour processes taking place in Titan's atmosphere, that we attribute to external forcing by Saturn's 134 tides. Saturn's tides are predicted to generate tidal winds in Titan's dense atmosphere, particularly significant in the troposphere²⁶ at altitudes where temperate clouds are found to develop^{2,3,13-15}. These 136 winds manifest themselves as eastward travelling planetary-scale waves of degree-two and change 137 east-west direction periodically through the tidally locked orbit of Titan²⁶. In consequence, tidally-138 induced winds periodically modify the convergence of air masses, mostly at two preferential longitudes 139 180 $^{\circ}$ apart, potentially resulting in perturbations to cloud formations²⁶.

140 The extension of the Cassini mission possibly up to the summer solstice in 2017 and the 141 continuation of ground-based observations will feed the GCMs with further observational constraints. 142 The refined GCMs will provide a better knowledge of the global atmospheric circulation, which is 143 crucial for understanding the carbon-cycle on Titan.

- 144
- 145 **References:**
- 146 1. Tokano, T. Three-dimensional modeling of the tropospheric methane cycle on Titan, *Icarus* **153**,
- 147 130-147 (2001).
- 148 2. Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on
- 149 Titan, *Science* **311**, 201-205 (2006).
- 150 3. Mitchell, J.L., Pierrehumbert, R.T., Frierson, D.M..W. & Caballero, R. The dynamics behind Titan's
- 151 methane clouds, *P. Natl Acad. Sci. USA* **103**, 18421- 18426 (2006).
- 152 4. Atreya, S.K. *et al*. Titan's methane cycle, *Planet. Space Sci.* **54**, 1177-1187 (2006).
- 153 5. Brown, M.E., Bouchez, A.H. & Griffith, C.A. Direct detection of variable tropospheric clouds near 154 Titan's south pole, *Nature* **420**, 795-797 (2002).
- 155 6. Bouchez, A.H. & Brown, M.E. Statistics of Titan's South polar tropospheric Clouds, *Astrophys. J.* 156 **618**, L53-L56 (2005).
- 157 7. Porco, C.C. *et al.* Imaging of Titan from the Cassini spacecraft, *Nature* **434**, 159-168 (2005).
- 158 8. Baines, K.H. *et al.* The atmospheres of Saturn and Titan in the near-infrared first results of Cassini/
- 159 VIMS, *Earth Moon Planets* **96**, 119-147 (2005).
- 160 9. Schaller, E.L., Brown, M.E., Roe, H.G. & Bouchez, A.H. A large cloud outburst at Titan's south
- 161 pole, *Icarus* **182**, 224-229 (2006a).
- 162 10. Schaller, E.L., Brown, M.E., Roe, H.G., Bouchez, A.H. & Trujillo, C.A. Dissipation of Titan's 163 south polar clouds, *Icarus* **184**, 517-523 (2006b).
- 164 11. de Pater, I. et al. Titan imagery with Keck adaptive optics during and after probe entry, *J. Geophys.*
- 165 *Res.* **111**, E07S05, doi: 10.1029/2005JE002620 (2006).
- 166 12. Hirtzig, M. et al. Monitoring atmospheric phenomena on Titan, *Astron. Astrophys.* **456**, 761-774 167 (2006).

- 168 13. Roe, H.G., Bouchez, A.H., Trujillo, C.A., Schaller, E.L. & Brown, M.E. Discovery of temperate
- 169 latitude clouds on Titan, *Astrophys. J.* **618**, L49-L52 (2005a).
- 170 14. Roe, H.G., Brown, M.E., Schaller, E.L., Bouchez, A.H., & Trujillo, C.A. Geographic control of Ti-
- 171 tan's mid-latitude clouds, *Science* **310**, 477-479 (2005b).
- 172 15. Griffith, C.A. et al. The evolution of Titan's mid-latitude clouds, *Science* **310**, 474-477 (2005).
- 173 16. Griffith, C.A. et al. Evidence for a polar ethane cloud on Titan, *Science* **313**, 1620-1622 (2006).
- 174 17. Le Mouélic, S. et al. Imaging of the North polar cloud on Titan by the VIMS Imaging Spectrometer
- 175 onboard Cassini, *39th Lunar and Planetary Science Conference*, LPI Contribution No. **1391**, 1649 176 (2008).
- 177 18. Brown, R.H. et al. The Cassini Visual and Infrared Mapping Spectrometer investigation, *Space Sci.* 178 *Rev.* **115**, 111-168 (2004).
- 179 19. Brown, M.E. et al. Discovery of Lake-effect clouds on Titan, *Geophys. Res. Lett.* **36**, L01103, doi: 180 10.1029/2008GL035964 (2009).
- 181 20. Griffith, C.A. et al. Characterization of clouds in Titan's tropical atmosphere, *Science*, submitted.
- 182 21. Hueso, R. & Sanchez-Lavega, A. Methane storms on Saturn's moon Titan, *Nature* **442**, 428-431 183 (2006).
- 184 22. Barth, E.L. & Rafkin, S.C.R. TRAMS: A new dynamic cloud model for Titan's methane clouds, 185 *Geophys. Res. Lett.* **34**, L03203, doi:10.1029/2006GL028652 (2007).
- 186 23. Turtle, E.P. et al. Cassini imaging of Titan's high-latitude lakes, clouds, and south-polar surface 187 changes, *Geophys. Res. Lett.* **36**, L02204, doi:10.1029/2008GL036186 (2009).
- 188 24. McKay, C.P. et al. Physical properties of the organic aerosols and clouds of Titan, *Planet. Space* 189 *Sci.* **49**, 79-99 (2001).
- 190 25. Jennings, D.E. et al. Titan's surface brightness temperatures, *Astrophys. J.* **691**, L103-L105, 191 doi:10.1088/0004-637X/691/2/L103 (2009).
- 192 26. Tokano, T & Neubauer, F.M. Tidal winds on Titan caused by Saturn, *Icarus* **158**, 499-515 (2002).

220 (**a**), showing clouds (red), limb (violet), typical surface (cyan) and a high 5-µm signal surface feature (Tui Regio²⁷) in green. "Surface" windows correspond to peaks at 1.27, 1.59, 2.03, 2.75 and 5 μ m. Be-222 cause clouds are efficient reflectors and reduce the path-length of solar photons, their spectra present a 223 brightening of all "surface" windows relative to other spectra. We found that the most robust spectral 224 criterion to separate clouds' pixels from other contributions (surface and limb) is the simultaneous in-225 creased integrated areas of the 2.75-µm and 5-µm windows. Conservative, two-sigma thresholds on the 226 integrated areas of these two windows are automatically calculated in order to isolate pixels corres-227 ponding to clouds (red triangles in (**a**)). We deliberately choose a conservative threshold to avoid false 228 positives. This can lead to the rare non-detection of optically thin or low-altitude clouds, of clouds 229 much smaller than a VIMS pixel, or of clouds that are too close to the limb. (**e**) shows the resulting 230 cloud pixels detection (in red) which are then reprojected on a global map (see Fig. 2).

231

232 Figure 2: **Maps of Titan's clouds derived from VIMS observations from July 2004 to December** 233 **2007.** Our detections are presented in cylindrical (top) and polar orthographic (bottom) projections. 234 The colors of the clouds correspond to the date of each cloud observation. A VIMS grayscale mosaic of 235 Titan's surface (adapted from RGB color composite global mosaics in ref. (28)) is used as background. 236 Clouds are found to be distributed in three clustered regions: the two poles and the southern temperate 237 latitudes. Only very few occurrences of clouds are found in equatorial regions. One cloud event is 238 found on December 2005 just above a particularly interesting terrain thought to be of cryovolcanic origin (Tui Regio²⁷) and may witness possible recent cryovolcanic activity.

240

Figure 3: **Latitudinal Titan's cloud coverage with time compared with Global Circulation Model3** ²⁴¹ 242 **predictions.** *Top***:** We reported here the latitudinal distribution of clouds we detected with VIMS ver-243 sus time from July 2004 to December 2007. The thin blue vertical lines mark the time of the VIMS ob-244 servations. The latitude extent of the clouds we detect is enhanced with thicker vertical lines, in blue

245 when in dayside and in green when in polar night. Isolated temperate clouds are colored in purple. The 246 previous Cassini and ground-based observations reported in the literature are superimposed over our 247 latitudinal distribution by colored dots and diamonds respectively. Our detections are in very good 248 agreement with the previous observations. *Bottom:* Integrated Titan's cloud opacity above 10 km, 249 summed each year, predicted by ref. (2)'s GCM (IPSL-TGCM) between 2004 and 2011. The thick 250 black lines show the edge of the polar night. Spatial distribution of clouds forecasted by the IPSL-251 TGCM, confining clouds at the two poles and around 40°S, is in very good agreement with our obser-252 vations (see *top* and Fig. 2). On the contrary, the observed clouds timing is poorly reproduced by the 253 IPSL-TGCM. In the time interval monitored by VIMS for this work, the IPSL-TGCM predict that the 254 south pole cloud should vanish before the equinox for more than one year, and that the 40°S cloud belt 255 should have reached a maximum of intensity between 2004 and 2007 and then should gradually vanish 256 with the incoming circulation turnover. This seems to be lately observed by VIMS, with a significant 257 delay (see text for details).

258

259 Figure 4: **The southern temperate clouds distribution in longitudes.** *(a):* The total number observa-260 tions that cover each 10° bin of longitude is shown with the solid red line for our study and the black 261 dotted line for ref. (14). *(b):* The number of clouds observed by VIMS between July 2004 and Decem-262 ber 2007 (our study - solid red line) and ref. (14) between December 2003 and February 2005 (black 263 dotted line) in each 10° bin of planetocentric longitude summed within 60°S and 0° of latitudes. Blue 264 bars indicate the Poisson standard deviation for each VIMS clouds count. The statistics indicate that 265 the overall shape of the longitudinal distribution is significant. *(c):* Normalized numbers of clouds 266 (number of clouds divided by the number of observations) from ref. (14) and from this study are com-267 pared. Our distribution shows two minima at the sub- $(0^{\circ}E)$, where ref. (14) saw a maximum, and anti-268 Saturn points (180°E). Two others minima are also present in the neighbourhood of 70°E and -110°E 269 longitude. But, due to Cassini's Saturn tour limitation, the detection of clouds was heavily precluded

- 270 here by particularly low spatial resolution (Fig. S5a) and very unfavourable conditions of observations
- 271 (resulting to high airmass Fig. S5b), so that these two minima cannot be interpreted with confidence.