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• Laser propulsion
 

• Hydrodynamic instabilities in ICF target
 
 
• High-temperature plasma as x-ray source

  - low-density aerogel

  - plasma medium for x-ray laser
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Ohnishi et al. (2006)

Ohnishi et al. (2005)

Tanabe et al. (2007)

Radiation hydrodynamic simulations have been conducted for 
applications of laser produced plasmas and other hypersonic flows



• Linear growth of the perturbation was found for low-l modes with 
neutrino heating

• 2D axisymmetric simulations suggest that SASI can trigger the 
explosion from the stalled shock wave

• Additional neutrino heating of neutrino-He inelastic scattering is 
enhanced by SASI but may play a minor role on a successful 
explosion

• It seems to be difficult that the pressure perturbation which is 
mimic of g-mode excites SASI due to the impedance mismatch

Standing accretion shock instability has been investigated by 2D 
axisymmetric simulations with steady-state solution

SUMMARY



1D simulations can NOT succeed a core-collapse supernova explosion 
even with including neutrino heating

(Rampp et al. 2002)
(Liebendörfer et al. 2002)

Any multi-dimensional effects are required to explain a core-
collapse supernova explosion.



Standing Accretion Shock Instability (SASI) can be observed in 
adiabatic supernova simulations

• coupling between entropy 
wave and acoustic wave

• no neutrino heating (no 
convective instability)

• large evolution in low 
modes (l = 1, 2)

entropy contours

(Blondin et al. 2003)



Governing equations without self-gravity effect



Heating of electron-type neutrino and antineutrino is taken into account 
assuming constant emission from central object
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Initial profiles are determined by solving steady state equations 
(Yamasaki & Yamada 2005)
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Numerical conditions

• axisymmetric (based on ZEUS-2D)

• tabulated EOS by Shen et al. (1998)

• fixed condition of the outer boundary with unperturbed state

• free outflow of the inner boundary except for the radial velocity

•  mass accretion rate and mass of the central object are fixed with

•  

• velocity perturbation is initially imposed on the whole flowfield

(other variables in the ghost mesh are copied with the most inner values)

with constant



Lv = 5.5x1052 erg/s

SASI occurs also with neutrino heating and leads to explode with high 
neutrino luminosity

w/ 1% velocity perturbation

Lv = 6.0x1052 erg/s



Amplitude of shock surface perturbation exponentially grows during 
~100 ms

(Ohnishi et al. 2006)

growth of the modes with l > 10 is negligibly small. With a neg-
ative entropy gradient (L! ¼ 5:5 ; 1052 ergs s"1), the broadening
of spectra to larger l modes is observed, although the dominance
of smaller l-modes can be still found. The convective instability
may enhance the growth of higher harmonics in the linear phase.
The similarity of the two cases suggests again that SASI is
dominant over the convection even when the latter is operating.

Recently, Foglizzo et al. (2005) discussed the linear stability
for convection in the accretion flows in the supernova core.
They found that the classical criterion for convection, that is, a
negative entropy gradient, is not sufficient for the accretion flows,
since limited time is available for growth. Although classical
convection has greater linear growth rates for modes with larger
wavenumbers, they claimed that there are minimum (kmin) and
maximum (kmax) wavenumbers for unstable modes in the ac-
cretion flows and that the growth rates are also modified. The
important parameter is the ratio of the advection time through
the gain region divided by the local timescale of buoyancy, ",
given in equation (40) in their paper. Applying their formula to our

models, we obtain " ¼ 4 7 for L! ¼ (5:5 6:5) ; 1052 ergs s"1,
with larger values for greater luminosities. Hence, the initial
configurations are unstable against convection for these models,
since the criterion " > 3 is satisfied. The minimum and maxi-
mum wavenumbers estimated in our models are kmin ¼ (2 6) ;
10"8 cm"1 and kmax ¼ 1 ; 10"6 cm"1, respectively. The smaller
kmin corresponds to larger luminosities. They roughly correspond
to theminimum andmaximum indices in the spherical harmonics,
lmin ¼ 2 4 and lmax ¼ 70 85, respectively. The lower lmin and
larger lmax are obtained for higher luminosities. These number ap-
pear to be consistent with the spectrum shown in Figure 6 as also
inferred fromFigure 5 in Foglizzo et al. (2005). Since the classical
growth rate of convection is comparable to that of SASI in ourmod-
els and the true growth rate of convection will be much smaller
than the classical estimation,we think that SASI is a dominant driv-
ing force for the nonradial motions we have observed so far.

It is also interesting to note that the modes with l ¼ 1; 2 are
dominant in the nonlinear regime, which begins after#100 ms.
As clearly seen in the broadening of the spectra in Figure 6,

Fig. 6.—Temporal evolutions of the spectra in the spherical harmonics decomposition for the models with L! ¼ 3:0 ; 1052 ergs s"1 (left) and L! ¼ 5:5 ; 1052

ergs s"1 (right). The random multimode velocity perturbations are initially added.

TABLE 1

Key Variables in SASI

L!
(1052 ergs s"1)

#
(s"1)

!
(s"1)

Rs;equil

(105 cm)

ws

(105 cm)

!adv

(s"1)

!snd

(s"1)

!cyc

(s"1)

3.0.................................. 42.4 915 66.9 30.9 1098 5867 925

5.5.................................. 45.7 277 128 79.2 262 1832 229

6.0.................................. 38.3 188 144 93.5 207 1497 181

6.5.................................. 35.6 143 167 114 159 1199 141

Notes.—L! represents the model luminosities. The growth rate and the oscillation frequency, denoted as # and !, respectively,
are obtained by least-squares fitting to the numerical results in the linear regime. The quantity Rs;equil is the initial shock radius, and
ws is the distance between the shock radius and the neutrinosphere; ws ¼ Rs;equil " r! . The frequencies associated with the
advection and the sound propagation between the shock and the neutrinosphere are denoted as !adv and !snd, respectively, and are
defined as !adv ¼ 2$/

R Rs

r!
(1/vr) dr and !snd ¼ 2$/

R Rs

r!
(1/cs) dr, respectively. They are evaluated numerically for the initial condi-

tions. The characteristic frequency of SASI is given by the cycle frequency, !cyc ¼ 2$/½
R Rs

r!
(1/vr) dr þ

R Rs

r!
(1/cs) dr&. See text for

more details.
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In order to obtain the linear growth rates for the fundamental
mode (l ¼ 1), we fit the amplitude of the mode, a1(t), with the
following expression,

a1(t)¼ A exp (!t) sin (!t þ " ); ð31Þ

where ! and ! are the exponential growth rate and the charac-
teristic oscillation frequency in the linear phase, respectively. A
least-squares fit is done for these parameters and the overall nor-
malization, A, and the phase, ". The dash-dotted line in Figure 5
represents the result. The obtained values of ! and! are listed in
Table 1 for the models with different L# .

According to Foglizzo (2001, 2002), the instability is pro-
duced by the cycle of the inward advection of the velocity and
entropy fluctuations and the outward propagation of the pres-
sure fluctuations (see also Blondin et al. 2003). If this is correct,
the characteristic oscillation frequency reflects the cycle period,

! ¼ 2$

Z Rs

r#

dr
1

cs
þ 1

vr

! "# $%1

; ð32Þ

where cs is the sound velocity. The values of ! estimated this
way are also given in Table 1. They are found to agree quite well
with the numerical results. However, other interpretations may
be possible. Blondin & Mezzacappa (2006) recently claimed, on
the basis of their numerical results, that the propagation of pres-
sure perturbations is responsible for the instability. It should first
be noted that ! and ! obtained for our models fit nicely with their
results (Fig. 4 in Blondin & Mezzacappa 2006) after they are
properly normalized. We find, on the other hand, that the oscilla-
tion period itself, not the frequency, agrees better with the cycle
period along the radial path from the shock to the inner boundary
back to the shock than with other times such as the sound crossing
time along the radial path from the shock through the center to
the opposite shock then back to the original point or the sound
propagation time for the round trip along the shock surface.
Provided numerical uncertainties, we cannot say conclusively
which interpretation is correct at present. We will have to make
more detailed comparisons of numerical results with the linear
analysis (T. Yamasaki & S. Yamada 2006, in preparation).

We can obviously find the L#-dependence of the oscillation
frequency, !, which can be understood as follows. As also
presented in Table 1, the width between the shock and the

neutrinosphere, ws ¼ Rs;equil % r# , becomes larger as the lumi-
nosity increases. As a result, the oscillation frequency is ex-
pected to become lower, since the fluctuations traverse longer
distances in the cycle.
The growth rate, !, on the other hand, has little dependence on

the luminosity as shown in Table 1. As mentioned already, the
instability occurs even in the case of L# ¼ 3:0 ; 1052 ergs s%1,
where the negative entropy gradient does not form and the struc-
ture is stable for convection. The interesting thing here is the fact
that the linear growth rates are not so different between themodels
with and without a negative entropy gradient. This suggests that
SASI plays a dominant role in driving the nonradial motions even
when convection is also expected to occur. This issue is discussed
further below in this section.
The simulations discussed so far have been done with an

initial velocity perturbation including only the fundamental mode
(l ¼ 1). However, other modes with l & 2 also develop rap-
idly from '50 ms. After '100 ms, the amplitude of the l ¼ 2
mode becomes of the same order as that of the fundamental
mode, which has already been saturated by this time. This marks
the beginning of the nonlinear phase. In fact, the l ¼ 2 mode is
also soon saturated. This transition from linear to nonlinear phase
corresponds to the time of the rapid increase of the average shock
radius shown in Figure 4. Since the average radius is nothing but
the l ¼ 0 mode, this can be interpreted as a result of the nonlinear
coupling of thismodewith the fundamental mode and the ensuing
saturation. As mentioned below, since the expansion of the shock
is crucial to trigger the shock revival and eventual explosion, it is
important that the neutrino luminosity is sustained for '100 ms,
the typical saturation time for SASI.
Next we discuss the models with randommultimode velocity

perturbations. Thus far, we have confirmed that the l ¼ 1 mode
is indeed unstable to SASI. Themodels are designed to discover
which mode is dominant. In so doing, we also study the influ-
ence of the existence of a negative entropy gradient. In Figure 6,
the temporal evolutions of the spectra of the spherical harmon-
ics are shown. The spherically symmetric component, the l ¼ 0
mode, is omitted in the figure. The cases without and with a
negative entropy gradient are shown in the left and right pan-
els, respectively. It is obvious that the modes with small l, es-
pecially those with l ¼ 1; 2, grow rapidly in the linear regime
(t P 100 ms). This is particularly the case for the model without
a negative entropy gradient (L# ¼ 3:0 ; 1052 ergs s%1), and the

Fig. 4.—Temporal evolutions of the l ¼ 0 component in the spherical har-
monic decompositions. The relative deviation from the initial value is plotted.

Fig. 5.—Temporal evolutions of the normalized amplitudes of the l ¼ 1; 2
modes for the model with L# ¼ 5:5 ; 1052 ergs s%1. The dot-dashed line rep-
resents the fitting in the linear phase.
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Lower modes are dominated even if the simulation starts with random 
moulti-mode perturbations

growth of the modes with l > 10 is negligibly small. With a neg-
ative entropy gradient (L! ¼ 5:5 ; 1052 ergs s"1), the broadening
of spectra to larger l modes is observed, although the dominance
of smaller l-modes can be still found. The convective instability
may enhance the growth of higher harmonics in the linear phase.
The similarity of the two cases suggests again that SASI is
dominant over the convection even when the latter is operating.

Recently, Foglizzo et al. (2005) discussed the linear stability
for convection in the accretion flows in the supernova core.
They found that the classical criterion for convection, that is, a
negative entropy gradient, is not sufficient for the accretion flows,
since limited time is available for growth. Although classical
convection has greater linear growth rates for modes with larger
wavenumbers, they claimed that there are minimum (kmin) and
maximum (kmax) wavenumbers for unstable modes in the ac-
cretion flows and that the growth rates are also modified. The
important parameter is the ratio of the advection time through
the gain region divided by the local timescale of buoyancy, ",
given in equation (40) in their paper. Applying their formula to our

models, we obtain " ¼ 4 7 for L! ¼ (5:5 6:5) ; 1052 ergs s"1,
with larger values for greater luminosities. Hence, the initial
configurations are unstable against convection for these models,
since the criterion " > 3 is satisfied. The minimum and maxi-
mum wavenumbers estimated in our models are kmin ¼ (2 6) ;
10"8 cm"1 and kmax ¼ 1 ; 10"6 cm"1, respectively. The smaller
kmin corresponds to larger luminosities. They roughly correspond
to theminimum andmaximum indices in the spherical harmonics,
lmin ¼ 2 4 and lmax ¼ 70 85, respectively. The lower lmin and
larger lmax are obtained for higher luminosities. These number ap-
pear to be consistent with the spectrum shown in Figure 6 as also
inferred fromFigure 5 in Foglizzo et al. (2005). Since the classical
growth rate of convection is comparable to that of SASI in ourmod-
els and the true growth rate of convection will be much smaller
than the classical estimation,we think that SASI is a dominant driv-
ing force for the nonradial motions we have observed so far.

It is also interesting to note that the modes with l ¼ 1; 2 are
dominant in the nonlinear regime, which begins after#100 ms.
As clearly seen in the broadening of the spectra in Figure 6,

Fig. 6.—Temporal evolutions of the spectra in the spherical harmonics decomposition for the models with L! ¼ 3:0 ; 1052 ergs s"1 (left) and L! ¼ 5:5 ; 1052

ergs s"1 (right). The random multimode velocity perturbations are initially added.

TABLE 1

Key Variables in SASI

L!
(1052 ergs s"1)

#
(s"1)

!
(s"1)

Rs;equil

(105 cm)

ws

(105 cm)

!adv

(s"1)

!snd

(s"1)

!cyc

(s"1)

3.0.................................. 42.4 915 66.9 30.9 1098 5867 925

5.5.................................. 45.7 277 128 79.2 262 1832 229

6.0.................................. 38.3 188 144 93.5 207 1497 181

6.5.................................. 35.6 143 167 114 159 1199 141

Notes.—L! represents the model luminosities. The growth rate and the oscillation frequency, denoted as # and !, respectively,
are obtained by least-squares fitting to the numerical results in the linear regime. The quantity Rs;equil is the initial shock radius, and
ws is the distance between the shock radius and the neutrinosphere; ws ¼ Rs;equil " r! . The frequencies associated with the
advection and the sound propagation between the shock and the neutrinosphere are denoted as !adv and !snd, respectively, and are
defined as !adv ¼ 2$/

R Rs

r!
(1/vr) dr and !snd ¼ 2$/

R Rs

r!
(1/cs) dr, respectively. They are evaluated numerically for the initial condi-

tions. The characteristic frequency of SASI is given by the cycle frequency, !cyc ¼ 2$/½
R Rs

r!
(1/vr) dr þ

R Rs

r!
(1/cs) dr&. See text for

more details.
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(Lv = 5.9x1052 erg/s)Inelastic scattering can be estimated by a 
fitting formula (Haxton 1988)

SASI may enhance inelastic scattering due to Helium production at 
shock front



Explosion is failed with incoherent scattering, but succeeded with an 
additional artificial factor

x1 incoherent scattering x10 incoherent scattering

Lv = 5.9x1052 erg/s

(Ohnishi et al. 2007)



Many simulations indicate that the inelastic scattering does not 
contribute so much to the successful explosion

of mu and tau neutrinos is chosen to be T!" ¼ 10 MeV, but we
also vary it to investigate the dependence of the dynamics on this
parameter. Note that the reaction rates are very sensitive to the
incident energy of neutrinos (see eq. [7]). The neutrino luminosity
is also varied in this study. In the reference model, the luminosity
of electron-type neutrinos L!e and antineutrinos L!̄e is set to be
5:9 ; 1052 ergs s"1. It is noted that this value is very close to the
threshold, L!e;!̄e ¼ 6:0 ; 1052 ergs s"1, at which a SASI-triggered
shock revival occurs without inelastic interactions, as described in
Ohnishi et al. (2006). The luminosity of mu and tau neutrinos
is set to be half that of electron-type neutrinos according to the
results obtained by detailed simulations (e.g., Liebendörfer et al.
2001).

3. RESULTS

Figure 1 shows the mass fractions of protons, neutrons, and
helium (top panel) and the profiles of QE and Qinel (bottom
panel) at the initial time for the referencemodel L59I0, where L!e
is set to be 5:9 ; 1052 ergs s"1 and T!" ¼ 10 MeV. The helium
abundance is small except for a narrow region inside the shock
wave. All the nuclei are completely dissociated to nucleons after
passing through the shock wave, because the standing shock is
located deep inside the gravitational potential well in spherically

symmetric accretions, and as a result, the postshock temperature
becomes too high for nuclei to survive. There is also a small
population of helium ahead of the shock owing to the partial
decomposition of nuclei by adiabatic compressions. This small
abundance is the main reason why most of the detailed numer-
ical simulations have not incorporated the reactions of neutrinos
with helium so far. The heating by the inelastic interactions is
appreciable only inside the shock wave accordingly. Note also
that the value of Qinel is multiplied by a factor of 30 in Figure 1. It
is thus expected that the inelastic reactions will not affect the
dynamics at least in the initial phase. This may not be the case for
later phases, however. After the nonspherical instability grows,
the shock radius becomes larger in general, and as a result, the
helium abundance will be increased in a wider region.Moreover,
most of this helium will be populated in the so-called heating
region (see Fig. 5).

We first summarize the basic feature of the temporal evolution
of the reference model L59I0 after 1% of the ‘ ¼ 1 single-mode
velocity perturbation is added. The exponential growth of the
perturbation is observed at first, and the shock surface is deformed
by the increasing amplitude of the nonradial mode. When the
nonlinear regime is reached, the shock begins to oscillate with
large amplitudes. As shown in Figure 2, where the time evolution

TABLE 1

Model Parameters

Model

L!e
(1052 ergs s"1)

Qinel

(eq. [6])

#vr/v1Dr
(%)

T!";$
(MeV) Shock Revival

L59I0............ 5.9 Y 1 10 X

L59I1............ 5.9 1 1 10 X

L59I3............ 5.9 3 1 10 X

L59I10.......... 5.9 10 1 10 #
L59I30.......... 5.9 30 1 10 #
L59I0d5........ 5.9 Y 5 10 X

L59I1d5........ 5.9 1 5 10 X

L59I3d5........ 5.9 3 5 10 #
L59I0d10...... 5.9 Y 10 10 #
L59T15......... 5.9 1 1 15 X

L59T20......... 5.9 1 1 20 X

L59T25......... 5.9 1 1 25 #
L58I0............ 5.8 Y 1 10 X

L58I1............ 5.8 1 1 10 X

L58I5............ 5.8 5 1 10 X

L58I10.......... 5.8 10 1 10 #
L58I15.......... 5.8 15 1 10 X

L58I20.......... 5.8 20 1 10 X

L58I30.......... 5.8 30 1 10 X

L58I40.......... 5.8 40 1 10 X

L58I50.......... 5.8 50 1 10 #
L58I100........ 5.8 100 1 10 #
L57I0............ 5.7 Y 1 10 X

L57I1............ 5.7 1 1 10 X

L57I10.......... 5.7 10 1 10 X

L57I30.......... 5.7 30 1 10 X

L57I100........ 5.7 100 1 10 #
L55I0............ 5.5 Y 1 10 X

L55I1............ 5.5 1 1 10 X

L55I10.......... 5.5 10 1 10 X

L55I30.......... 5.5 30 1 10 X

L55I100........ 5.5 100 1 10 X

Notes.—The variable L!e represents the luminosity of the electron-type neu-
trino. For Qinel, only the multiplicative factor is given. The term #vr /v1Dr denotes
the initial relative amplitude of the velocity perturbation. The variable T!";$ is the
temperature of mu and tau neutrinos. The ‘‘successful shock revival’’ is defined
as a continuous increase of the shock radius by $500 ms.

Fig. 1.—Mass fractions of helium and nucleons (top) and the heating rates
(bottom) at the initial time for the reference model L59I0. The solid and dashed
lines in the top panel denote the mass fractions of helium and nucleons, respec-
tively. The bottom panel represents the net heating rates by absorptions and emis-
sions on nucleons (solid line) and the inelastic interactions with helium (dashed
line). Note that the latter rate is multiplied by a factor of 30.
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of the angle-averaged shock radius is presented, the oscillation
becomes quasi-steady by!150 ms. Note that the shock radius in
this phase is larger than the initial value, as pointed out byOhnishi
et al. (2006). We have found no shock revival for this model. In
fact, as mentioned above, the shock revival is found only for
L!e " 6 ; 1052 ergs s#1 if the inelastic interactions are not taken
into account. In the last columnof Table 1,we summarize for each
model if the shock revival is found by!500 ms after the onset of
computation. It should be noted that the shock revival, if observed
in our models, does not guarantee the explosion in more realistic
settings, since the neutrino luminosity will not be constant in time
as assumed in our models and will decline in reality. Hence, our
criterion for the shock revival should be regarded as a minimum
requirement for explosion.

Now we proceed to consider the effect of the inelastic inter-
actions of neutrinos with helium. The time evolution of shock
radius for models L59I1, L59I3, and L59I10 are presented in
Figure 2 together with that for the reference model L59I0. These
models have the same neutrino luminosity and initial velocity
perturbation as the reference model. The difference is the as-
sumed cross sections for the inelastic reactions. As mentioned
above, considering the uncertainties that the theoretical estima-
tion inherently has, we multiply the nominal values of the cross
sections given by equations (6) and (7) by the factors given in
Table 1. Except for model L59I10, the shock oscillations ac-
companied by the growth of SASI are settled to quasiYsteady
states by!150 ms just as in the reference model. The final shock
radii are not very different from each other among these no-
revival models and are larger than that of the initial condition.
Model L59I10, whoseQinel is multiplied by a factor of 10, gives
a shock revival after a rather long time, !450 ms. As seen in
Figure 2, the evolution in the early phase is essentially the same
as for other models, as expected from the helium abundance in
the initial condition. This is also seen in the growth rates of the
‘ ¼ 1 and 2 modes presented in Figures 3 and 4, respectively.
Here we decompose the deformation of the shock surface into
the spherical harmonic components,

Rs(" ) ¼
X1

‘¼0

a‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4#

r
P‘(cos " ): ð8Þ

Since the system is axisymmetric, only m ¼ 0 harmonics,
which are nothing but Legendre polynomials, show up. The co-

efficients a‘ can be calculated by the orthogonality of the Legendre
polynomials,

a‘ ¼
2‘þ 1

2

Z 1

#1

Rs(" )P‘(cos " ) d cos ": ð9Þ

The position of the shock surface Rs(" ) is determined as the
isoentropic surface of s ¼ 5. No essential difference between the
results with the inelastic interactions and the results without
them can be seen in both the linear phase lasting for !150 ms
and the early nonlinear phase. Therefore, the additional heating
from the inelastic interactions does not play an important role in
the growth of SASI.
Figure 5 shows in themeridian section the contours of themass

fractions of nucleons and helium and the neutrino heating rates for
model L59I10. Note that the heating rates for the inelastic re-
actions (the right half of the right panels of Fig. 5) are plotted in
the logarithmic scale, whereas those for the others (the left half )
are plotted in the linear scale. At 100 ms when the perturbation is
still growing in the linear regime, the mass fraction of helium is
not so large in most of the region. One can see some minor heat-
ing via the inelastic interactions both inside and ahead of the shock
wave; the latter of which is the preheating considered by Haxton

Fig. 2.—Temporal evolution of the angle-averaged shock radius (‘ ¼ 0) for
the models with L!e ¼ 5:9 ; 1052 ergs s#1. The relative deviations from the initial
value are plotted for models L59I0, L59I1, L59I3, and L59I10.

Fig. 3.—Temporal evolution of the normalized amplitudes of the ‘ ¼ 1 mode
in the spherical harmonic decompositions for models L59I0, L59I1, L59I3, and
L59I10. See the text for details.

Fig. 4.—Same as Fig. 3, but for ‘ ¼ 2.

OHNISHI, KOTAKE, & YAMADA4 (V667/65532) 7/31/07 Vol. 667

of the angle-averaged shock radius is presented, the oscillation
becomes quasi-steady by!150 ms. Note that the shock radius in
this phase is larger than the initial value, as pointed out byOhnishi
et al. (2006). We have found no shock revival for this model. In
fact, as mentioned above, the shock revival is found only for
L!e " 6 ; 1052 ergs s#1 if the inelastic interactions are not taken
into account. In the last columnof Table 1,we summarize for each
model if the shock revival is found by!500 ms after the onset of
computation. It should be noted that the shock revival, if observed
in our models, does not guarantee the explosion in more realistic
settings, since the neutrino luminosity will not be constant in time
as assumed in our models and will decline in reality. Hence, our
criterion for the shock revival should be regarded as a minimum
requirement for explosion.

Now we proceed to consider the effect of the inelastic inter-
actions of neutrinos with helium. The time evolution of shock
radius for models L59I1, L59I3, and L59I10 are presented in
Figure 2 together with that for the reference model L59I0. These
models have the same neutrino luminosity and initial velocity
perturbation as the reference model. The difference is the as-
sumed cross sections for the inelastic reactions. As mentioned
above, considering the uncertainties that the theoretical estima-
tion inherently has, we multiply the nominal values of the cross
sections given by equations (6) and (7) by the factors given in
Table 1. Except for model L59I10, the shock oscillations ac-
companied by the growth of SASI are settled to quasiYsteady
states by!150 ms just as in the reference model. The final shock
radii are not very different from each other among these no-
revival models and are larger than that of the initial condition.
Model L59I10, whoseQinel is multiplied by a factor of 10, gives
a shock revival after a rather long time, !450 ms. As seen in
Figure 2, the evolution in the early phase is essentially the same
as for other models, as expected from the helium abundance in
the initial condition. This is also seen in the growth rates of the
‘ ¼ 1 and 2 modes presented in Figures 3 and 4, respectively.
Here we decompose the deformation of the shock surface into
the spherical harmonic components,

Rs(" ) ¼
X1

‘¼0

a‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4#

r
P‘(cos " ): ð8Þ

Since the system is axisymmetric, only m ¼ 0 harmonics,
which are nothing but Legendre polynomials, show up. The co-

efficients a‘ can be calculated by the orthogonality of the Legendre
polynomials,

a‘ ¼
2‘þ 1

2

Z 1

#1

Rs(" )P‘(cos " ) d cos ": ð9Þ

The position of the shock surface Rs(" ) is determined as the
isoentropic surface of s ¼ 5. No essential difference between the
results with the inelastic interactions and the results without
them can be seen in both the linear phase lasting for !150 ms
and the early nonlinear phase. Therefore, the additional heating
from the inelastic interactions does not play an important role in
the growth of SASI.
Figure 5 shows in themeridian section the contours of themass

fractions of nucleons and helium and the neutrino heating rates for
model L59I10. Note that the heating rates for the inelastic re-
actions (the right half of the right panels of Fig. 5) are plotted in
the logarithmic scale, whereas those for the others (the left half )
are plotted in the linear scale. At 100 ms when the perturbation is
still growing in the linear regime, the mass fraction of helium is
not so large in most of the region. One can see some minor heat-
ing via the inelastic interactions both inside and ahead of the shock
wave; the latter of which is the preheating considered by Haxton

Fig. 2.—Temporal evolution of the angle-averaged shock radius (‘ ¼ 0) for
the models with L!e ¼ 5:9 ; 1052 ergs s#1. The relative deviations from the initial
value are plotted for models L59I0, L59I1, L59I3, and L59I10.

Fig. 3.—Temporal evolution of the normalized amplitudes of the ‘ ¼ 1 mode
in the spherical harmonic decompositions for models L59I0, L59I1, L59I3, and
L59I10. See the text for details.

Fig. 4.—Same as Fig. 3, but for ‘ ¼ 2.
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Acoustic power generated in the inner core may drive an explosion

(Burrows et al. 2006)



Excitation of g-mode by SASI is inefficient due to the severe 
impedance mismatch

The saturated energy is less than 1050 ergs even with the most 
efficiently excited mode (g2-mode with l=1)

(Yoshida et al. 2007)



Initial conditions of Ln=3.0e52 ergs/s, Mdot=0.2398M⊙
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Numerical conditions

• axisymmetric

• tabulated EOS by Shen et al. (1998)

• fixed condition of the outer boundary with unperturbed state

• free outflow of the inner boundary except for the radial velocity

•  mass accretion rate and mass of the central object are fixed with

•  

• pressure perturbation at the inner boundary with g-mode frequency

(other variables in the ghost mesh are copied with the most inner values)

with constant



Perturbation growth in the early stage
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Viscous heating estimated by the artificial viscosity of ZEUS code
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Viscous heating movies



Spectral analysis of viscous heating (l=1)
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Spectral analysis of viscous heating (l=2)
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Acoustic wave propagation in the stellar atmosphere

(Suzuki, private communication)



Pressure scale height for the steady-state solution of Ln=3.0e52 ergs/s
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Acoustic wave propagation with random perturbation
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Perturbation growth in the linear phase

10-5

10-4

10-3

10-2

10-1

100

 0  20  40  60  80  100

No
rm

al
ize

d 
Am

pl
itu

de
, |

a 1
/a

0|

Time [ms]

l=1, g2, 10%



• Linear growth of the perturbation was found for low-l modes with 
neutrino heating

• 2D axisymmetric simulations suggest that SASI can trigger the 
explosion from the stalled shock wave

• Additional neutrino heating of neutrino-He inelastic scattering is 
enhanced by SASI but may play a minor role on a successful 
explosion

• It seems to be difficult that the pressure perturbation which is 
mimic of g-mode excites SASI due to the impedance mismatch

Standing accretion shock instability has been investigated by 2D 
axisymmetric simulations with steady-state solution

SUMMARY


