The Gravitational Wave Signature of Core-Collapse Supernovae (and what we can learn from it) Christian David Ott

Joint Institute for Nuclear Astrophysics Postdoctoral Fellow Steward Observatory & Department of Astronomy, The University of Arizona cott@stellarcollapse.org

Adam Burrows (Princeton) Eli Livne (Jerusalem) Luc Dessart (Princeton, Arizona, Marseille) Jeremiah Murphy (Washington) Harald Dimmelmeier (Garching/Areva) 🚱

H.-Thomas Janka (MPA Garching)

Andreas Marek (MPA Garching)

Ewald Müller (MPA Garching)

Ian Hawke (Southampton), Erik Schnetter (Louisiana State), Burkhard Zink (Louisiana State), Ed Seidel (LSU), Bernard Schutz (AEI)

It's the multi-D, stupid.

It's all about convection, the SASI, rotation with MHD, and the g-modes! **Mr. Chairman, if we have to run this model for 100 years to get the answer, we will do just that!** Even the French, Japanese, Swiss, and Germans are doing it!!!

Did he just say g-modes?!? Won't they emit gravitational waves like crazy?

Yeah right, show me robust and powerful 2D neutrino-driven explosions! Got to go straight to 3+1 GRRMHD, Bill!

It's a gravity bomb!

The election year 2008 in the light of recent advances in core-collapse supernova theory.

Blowing up Massive Stars: Core-Collapse SN Mechanisms

- Standard Neutrino mechanism works in 1D for lowest-mass massive stars (O-Ne-Mg cores). [Kitaura et al. 2006, Burrows 1987, 2007c]
 2D: accretion induced collapse with rapid rotation. [Dessart et al. '06, '08]
- More massive progenitors: Multi-D effects probably crucial: Convection, accretion shock instabilities, rotation, MHD, PNS pulsations.

2D/3D Neutrino

Mechanism

- +v energy deposition.
- + Convection/Standing-Accretion-Shock Instability (SASI) & soft EOS. -> 11.2 M_{SUN}, 15 M_{SUN} [Buras et al. '06, Marek & Janka '07]

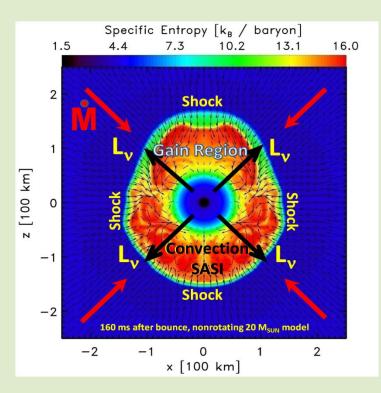
+ Si/O burning.

[Bruenn et al. '06, Mezzacappa et al. '07]

MHD-Jet

Mechanism

- + Rapid Rotation
- + B-field amplification: flux compression, MRI,
 - winding, dynamos
- + Robust, early jet-driven explosions (up to 10 B).

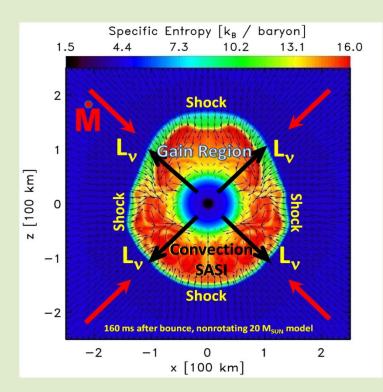

[e.g., Burrows et al. '07, Wilson et al. '05, Yamada & Sawai '04, Mizuno et al. '04, Akiyama et al. '03, '05, Shibata et al. '06]

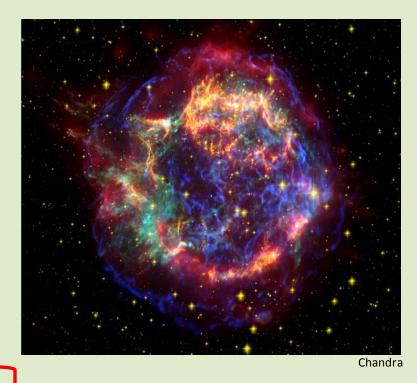
Acoustic

Mechanism

- + Excitation of PNS *g*-mode pulsations by accretion/ SASI/turbulence.
- + Damping via emission of strong sound waves that steepen to shocks.
- + Robust, late explosions. [Burrows et al. '06, '07, Ott et al. '07, but: Weinberg & Quatert '07]

Constraining the Core-Collapse Supernova Explosion Mechanism

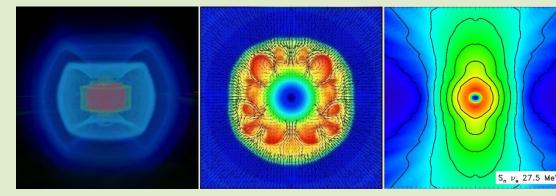

Secondary Observables

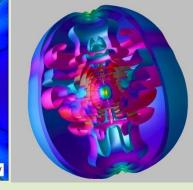


Classical Observational Astronomy:

- Explosion morphology, lightcurve, energy, chemical composition.
- Progenitor type / mass.
- Pulsar kicks.
- Neutron star mass.

Constraining the Core-Collapse Supernova Explosion Mechanism


Neutrino and Gravitational Wave Astronomy


- Direct "live" information from the supernova engine.
- GWs: Directly linked to the ubiquitous multi-D dynamics in the postshock region and in the PNS.

Primary Observables

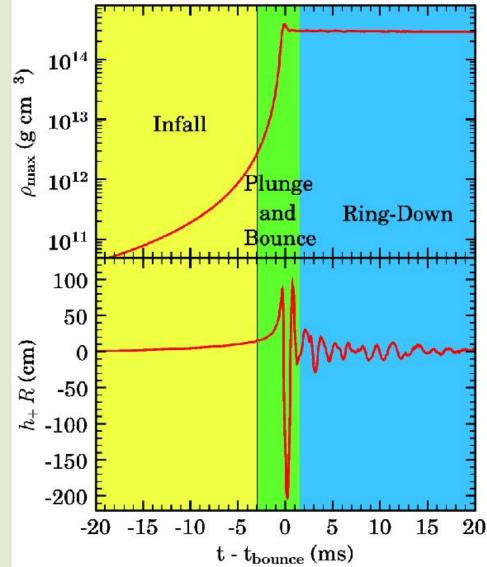
GW Emission Processes in Core-Collapse SNe

- Rotating core collapse and core bounce.
- Postbounce convection and SASI.
- Anisotropic neutrino emission.
- PNS core pulsations.
- PNS dynamical rotational 3D instabilities.
- Aspherical outflows (jets; precollapse asymmetries)

Newtonian Quadrupole Formula:

$$h_{jk}^{TT}(t,\vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t-\frac{|\vec{x}|}{c})\right]^{TT}$$

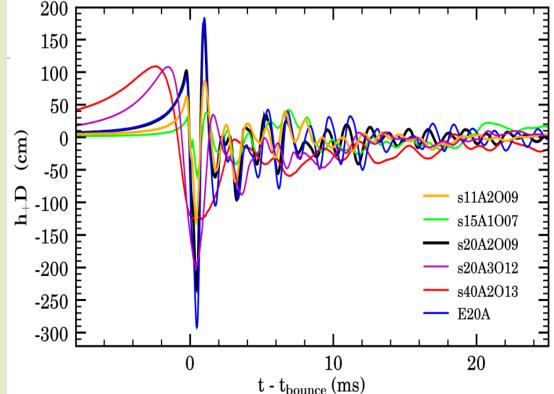
Rotating Core Collapse and Bounce


Collapse: Angular momentum conservation leads to spin up & rotational deformation of inner

		•	•	`	•	١	٠	•	٦	•		'	•	'	1	1	1	-		
core.		-	•	×	•	•	•	۰.	۰.							1	1	•	-	•
		•	•	٠	•	•	•	•	•	•	•	•	•	•			•	•	•	-
	• •	-	•	•	•	•	•	•	•		•		•	·	•	•	•	•	-	-
	• •	•	•	•	•	•	•							•	·	•	•	•		•
	•	÷	•	•	•	•									÷	•	•	ŀ		÷.
	• •		•	•		•									•		•	•		÷.,
	•	•		\cdot	•	•	•							•		•			•	•
		-	•	•	•	•	•	•		÷	•	•	•	•	•	•	•	•	•	-
		-	-				•	•	•	÷	•	•	•	•	•	•	•	•	•	-
		-		1		1	•		•	÷		۰.	•	٠	×	×	×	•	•	•
				- C																

- At core bounce: Very large accelerations -> rapidly changing mass quadrupole moment.
- Most extensively studied GW emission in core collapse:

Ruffini & Wheeler 1971 Thuan & Ostriker 1974, Saenz & Shapiro 1978-1981 Moenchmeyer et al. 1991 Moncrief 1979 Mueller 1981 Detweiler & Lindblom 1981 Zwerger & Mueller 1997 Turner & Wagoner 1979


Seidel et al. late 1980s Finn & Evans 1990 Bonazzola & Marck 1993 Yamada & Sato 1995 Dimmelmeier et al. 2002 Ott et al. 2004 Shibata & Sekiguchi 2004

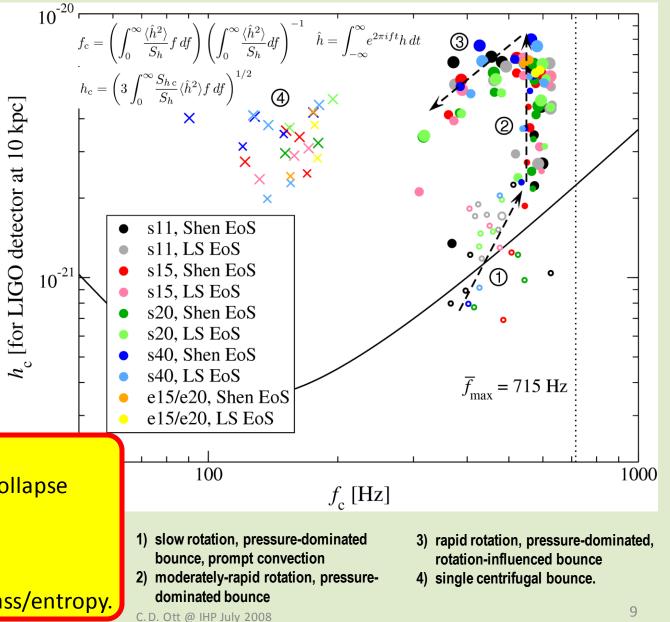
New Results: Rotating Collapse and Bounce

[Dimmelmeier et al. 2008, Dimmelmeier et al. 2007, Ott et al. 2007, Ott 2006]

- First 2D/3D GR simulations with hot microphysical EOS & deleptonization during collapse.
- GW signature determined by inner core mass, inner core angular momentum, and (to some extent) nuclear EOS.
- GW signal of generic shape; no "multiple centrifugal bounce" or fizzlers.
- GWs from "quickly" spinning cores (precollapse P₀ < ~10 s) "detectable" throughout the Milky Way.

• Important finding:

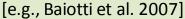
Cores stay axisymmetric through bounce and early postbounce phase.

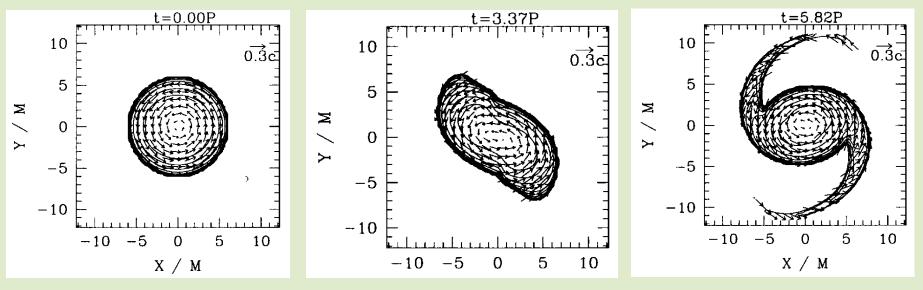

New Extended 2D GR Model Set

[Dimmelmeier, Ott, Marek, and Janka 2008 submitted, Dimmelmeier et al. 2007ab, Ott et al. 2007]

- >140 2D GR models with Y_e(ρ) parametrization.
- 6 presupernova models.
- Slow to very rapid rotation.
- Solid-body to moderately differential rotation.
- 2 finite-temp. nuclear EOSs.

Results


- GW signature of rotating collapse multi-degenerate.
- Key parameters:
 - Precollapse central Ω.
 - Precollapse iron-core mass/entropy.



PNS Spin and Rotational Instabilities

[Dimmelmeier et al. 2008, Ott et al. 2007, Ott et al. 2006]

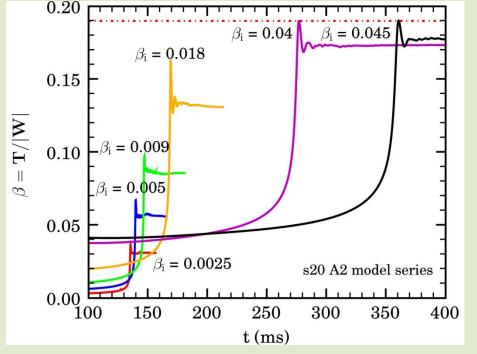
 Classical picture: High T/|W| instabilities. Azimuthal modes ∝ exp(im_φ). m=2 "bar-modes" (T/|W|)_{dynamical} = 0.27, (T/|W|)_{secular} ≈ 0.14. [e.g., Chandrasekhar 1969] Numbers hold roughly in GR and moderate differential rotation.

[Shibata et al. 2000, 3+1 GR simulations]

Rapid Rotation and Nonaxisymmetric Dynamics

3D GR simulation Ott 2006, rendition by R. Kähler, Zuse Institute, Berlin

WARNING: Crazy toy model!!!

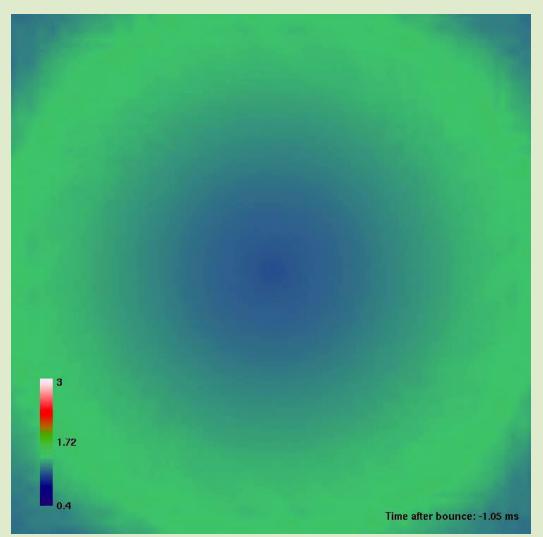

C. D. Ott @ IHP July 2008

PNS Spin and Rotational Instabilities

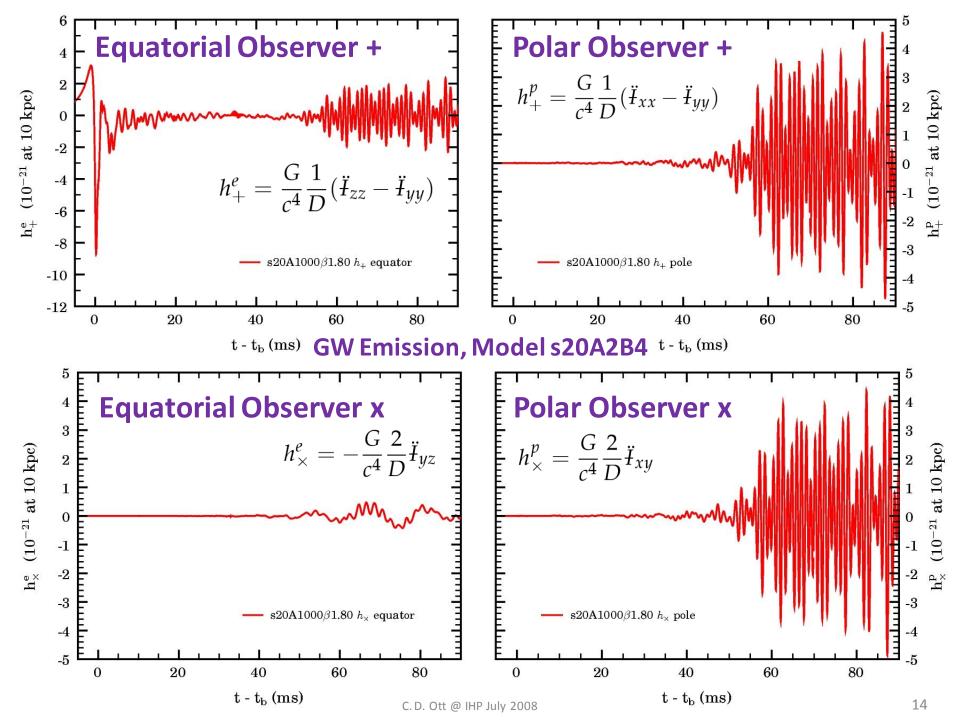
[Dimmelmeier et al. 2008 arXiv 0806.5953, Ott et al. 2007, Ott et al. 2006]

 Classical picture: High T/|W| instabilities. Azimuthal modes ∝ exp(im_φ). m=2 "bar-modes" (T/|W|)_{dynamical} = 0.27, (T/|W|)_{secular} ≈ 0.14. [e.g., Chandrasekhar 1969] Numbers hold roughly in GR and moderate differential rotation. [e.g., Baiotti et al. 2007]

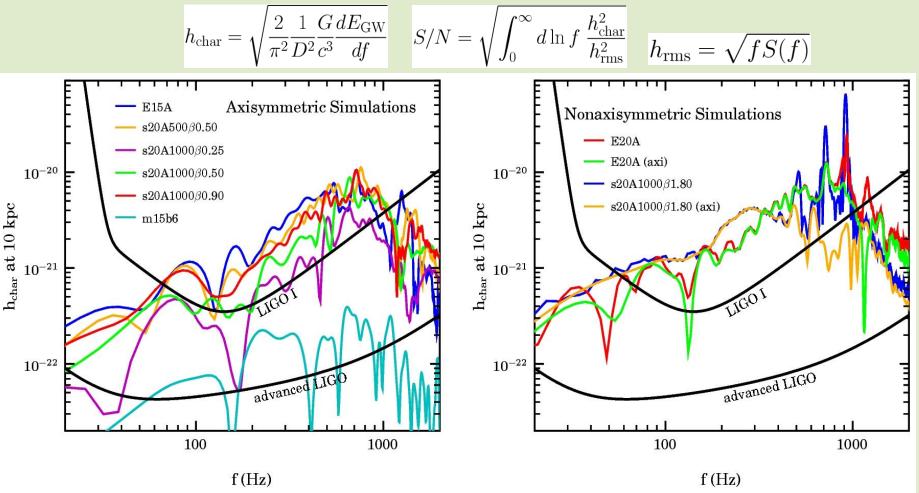
Can a realistic PNSs reach such high T/|W|?


- Direct numerical simulation: No – Collapsing cores hit rotational barrier.
 [Ott et al. PRL 2007 & CQG 2007, Dimmelmeier, Ott et al. 2008, arxiv 0806.4953]
- Critical T/|W| (secular/ dynamical) attainable during PNS cooling.
- Don't forget MHD!

A Low-T/|W| Rotational Instability


• Dynamical rotational instability at low T/|W|.

[e.g., Centrella et al. 2001, Saijo 2003, Saijo & Yoshida 2006, Ott et al. 2005, Ou & Tohline 2006, Cerdá et al. 2007b]


- Dominant m=1 mode; m={2,3} modes mixed in (radial & temporal variation).
- Mechanism: Corotation instability (?) Resonance of unstable mode with background fluid at corotation point(s).
- Spiral density waves relationship to accretion and galactic disks? SASI?
 -> angular momentum transport.

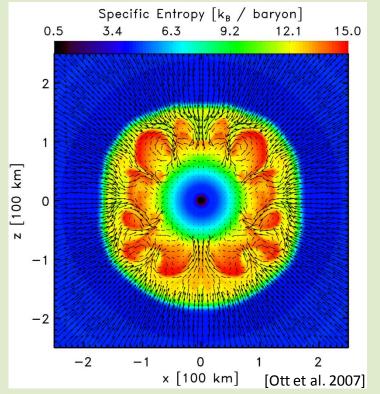
 Note: PNS embedded in SN core and continuously accreting angular momentum. Cannot be described by an equilibrium NS model!

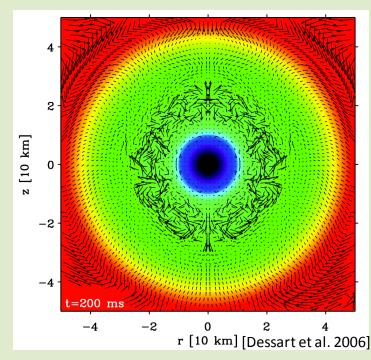
GW Emission vs. Detector Noise

 3D component: lower in amplitude than core-bounce GW spike, but greater in energy! Emission in narrow frequency band around 900—930 Hz (~2 x pattern speed of the unstable mode!) models.

Switching Gears:

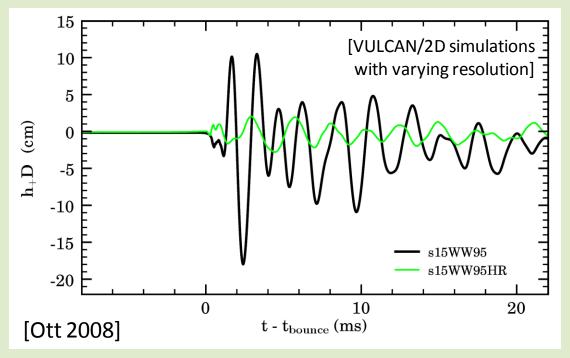
GWs emitted by Convection, SASI, Neutrinos, Global Asymmetries, & PNS core g-modes


(Most) Calculations performed with the axisymmetric Newtonian VULCAN/2D radiation-(magneto)hydrodynamics code.

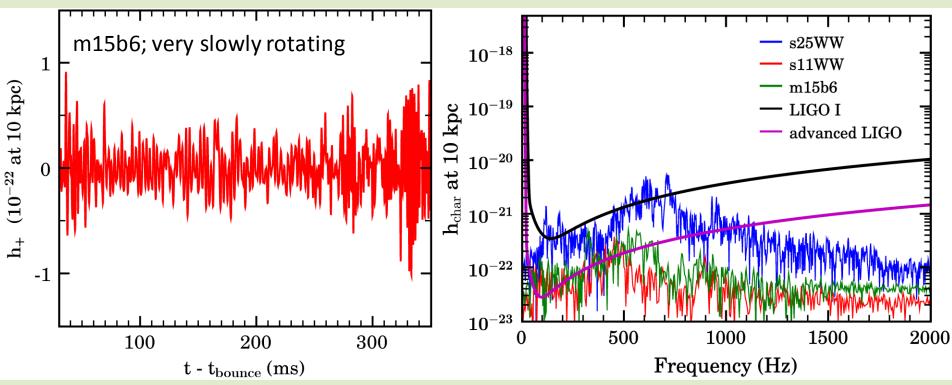

[Livne et al. '93, '04, '07, Burrow et al. '06, '07abc, Dessart et al. '06, ab '07, Ott et al. '06ab, '08]

Convection

[e.g., Janka & Müller 96, Burrows et al. 95, Mezzacappa et al. 98, Swesty & Myra 06, Dessart et al. 06 & references therein.]


- Prompt postbounce convection.
- Postbounce neutrino-driven convection in gain layer generic to all non- and slowly rotating SN cores.
- PNS core convection.

GWs from Prompt Convection


[Ott 2008 submitted, Dimmelmeier et al. '08, Scheidegger et al. '08, Ott et al. '06, Kotake et al. '03]

- Negative entropy gradient left behind by stalling shock drives prompt postbounce convection. [e.g., Burrows & Hayes 1992]
- Gradient to some extent smoothed out by neutrino emission.
- Growth and duration of convection strongly dependent on seed perturbations. -> Need parameter study to understand systematics.
- Real stars inevitably will have seed perturbations. Magnitude unclear.

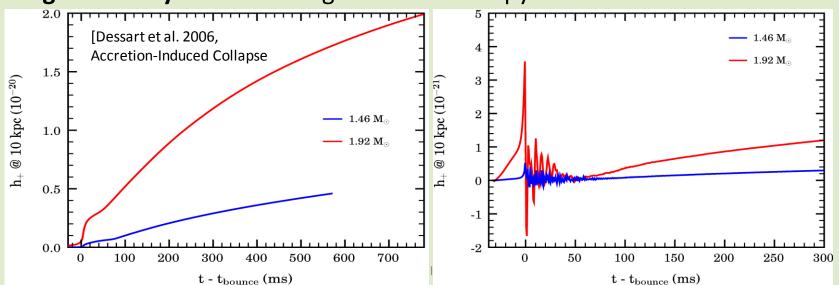
GWs from Convection & SASI

[Ott et al. 2008 in prep., Ott et al. 2006, Müller et al. 2004, Müller & Janka 1997]

- Mixture of PNS and post-shock convection/turbulence.
- Convection (partially) stabilized by rapid rotation (positive j gradient)
- Broad-band, low-amplitude GW emission.
- $E_{GW} < 10^{-11} 10^{-9} M_{\odot}c^2$
- In addition: low-frequency emission due to neutrinos. (not shown here; see talk by Kei Kotake this afternoon!)

GWs from Anisotropic Neutrino Emission

[Epstein 1978, Burrows & Hayes 1996, Janka & Müller 1997, Müller et al. 2004, Dessart et al. 2006, Ott 2006, Ott et al. 2008 in prep.]

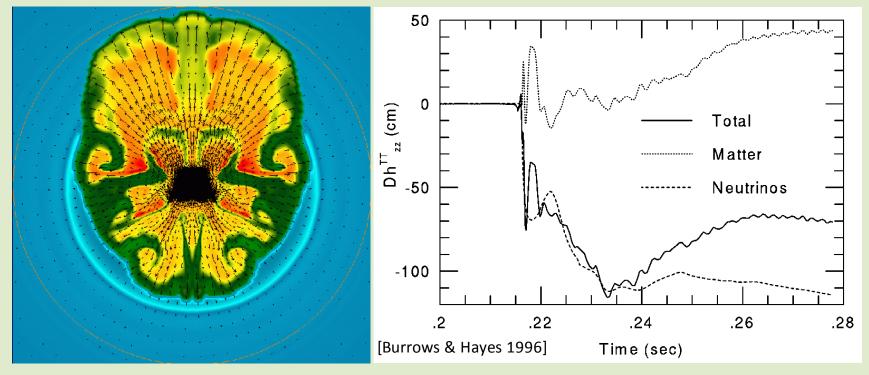

• Any accelerated mass-energy quadrupole will emit GWs. Anisotropic neutrino radiation:

$$h_{+,e}^{TT}(t) = \frac{2G}{c^4 D} \int_{-\infty}^{t-D/c} \alpha(t') L_{\nu}(t') dt'$$

 GW "Memory"

$$lpha(t) = rac{1}{L_
u(t)} \int_{4\pi} \Psi(artheta',arphi') rac{dL_
u(ec{\Omega}',t)}{d\Omega'} d\Omega'$$

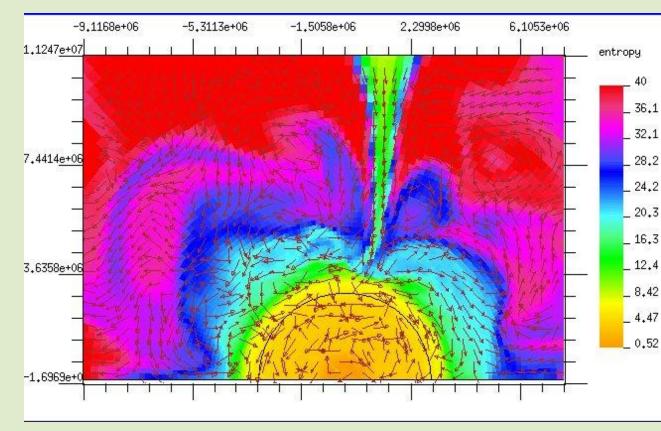
- Anisotropic neutrino emission in core-collapse SNe:
 - Convective overturn: small-scale variations.
 - Rapid rotation: large-scale anisotropy.
 - Large-scale asymmetries: large-scale anisotropy.

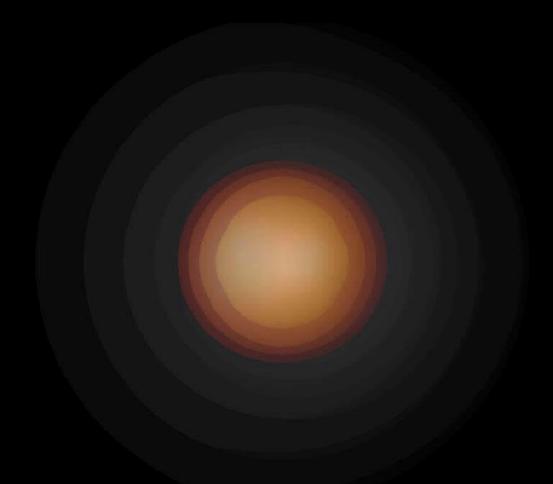


20

 $S_n \nu_e 27.5 \text{ MeV}$

GWs from Aspherical Outflows

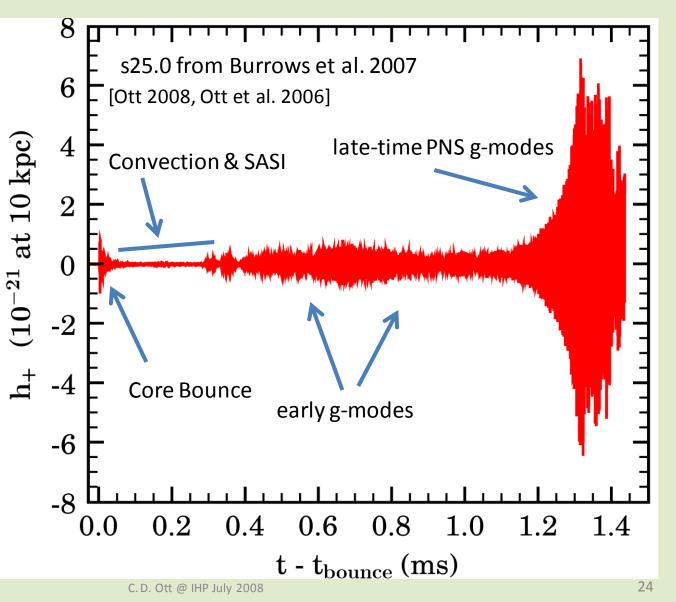

[Burrows & Hayes 1996, Fryer et al. 2004; in the MHD context: Kotake et al. 2004, Obergaulinger et al. 2005, 2006]


- Precollapse inhomogeneities in nuclear silicon/oxygen burning may be large, leading to density perturbations O(10%). [Bazan & Arnett '97, Meakin et al. '06].
- May result in asymmetric explosions (-> pulsar recoils) and emission of GW burst (with memory!) from mass motions and neutrinos.
- Somewhat unexplored: Only 2 studies; most stellar evolution is done in 1D. Would need large parameter study.
- Aspherical outflows also in jet-driven explosions: See Kei Kotake's talk!

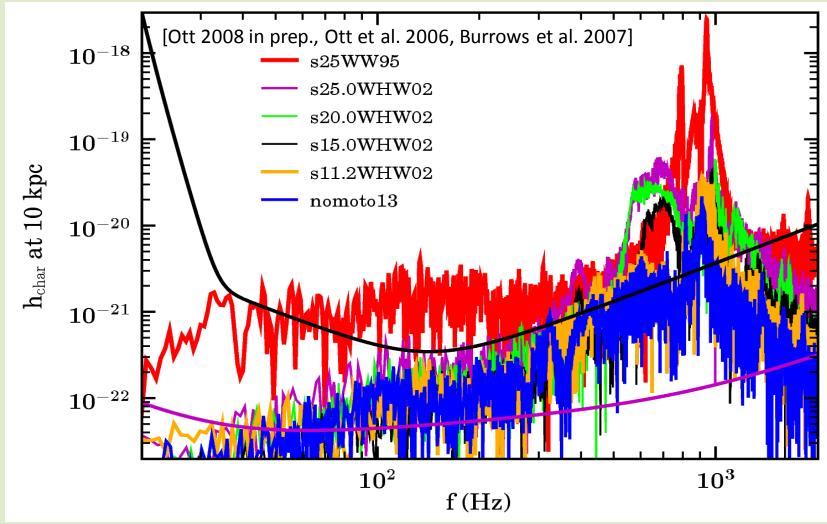
Unstable Protoneutron Star Core g-modes & The Acoustic Supernova Mechanism [Burrows et al. 2006, 2007b/c, Ott, Burrows et al. 2006]

SASI-modulated supersonic accretion streams and SASI generated turbulence excite lowest-order (I=1) buoyancy mode in the PNS. Eigenfrequency f \approx 300 Hz + 30%.

- g-modes reach large amplitudes ~600-1000 ms after bounce.
- Damping by strong sound waves that steepen into shocks; deposit energy in the stalled shock.
- Drive ~1 B explosions at late times.

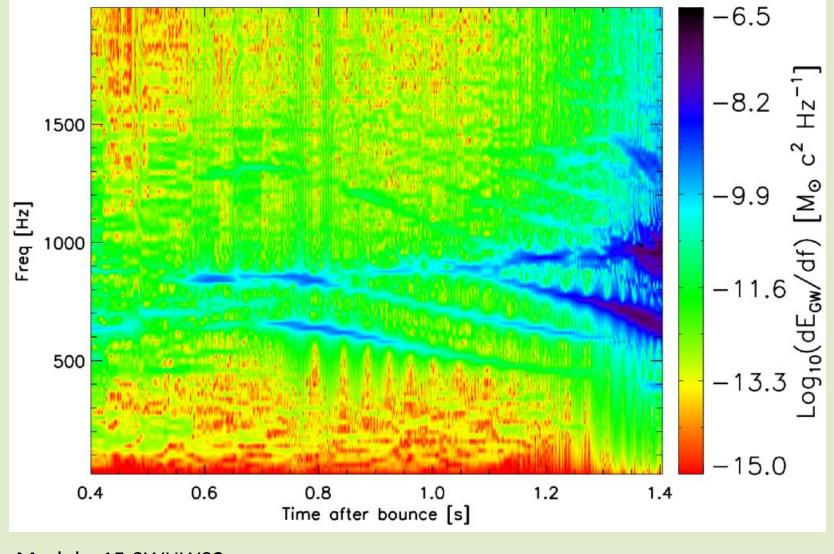

Time = -0.50 ms

Width = 50.00 km


PNS core oscillations, Burrows et al. 2006, 2007; Ott et al. 2006

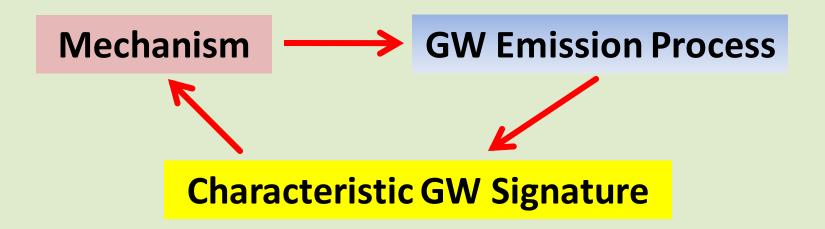
GWs from PNS core g-modes: The GW Signature of the Acoustic Mechanism

- Core bounce: Rotation, perturbations, prompt convection.
- Convection: PNS and v-driven.
- g-modes:
 l=2 components
 emit GWs.
- But: g-modes may saturate at low level. [Weinberg & Quatert 2008]



GW Spectra and LIGO Sensitivity

- $E_{GW} \sim 10^{-8} 10^{-6} M_{\odot}c^2$, one model 8 x $10^{-5} M_{\odot}c^2$.
- Progenitor mass (= accretion rate) dependence.


Time-Frequency Analysis of the GW Power Spectrum

Models s15.0WHW02

Putting Things Together:

GWs as Indicators for the Core-Collapse Supernova Explosion Mechanism

Mechanism / Feature	MHD Mechanism	Acoustic Mechanism	Neutrino Mechanism
Progenitor Rotation	fast, P ₀ < 4 s	none/slow	none/slow
Core Bounce GWs			
Convection/ SASI GWs			
Neutrino GWs			
Rotational 3D Instability GWs			
PNS g-mode GWs			

Mechanism / Feature	MHD Mechanism	Acoustic Mechanism	Neutrino Mechanism
Progenitor Rotation	fast, P ₀ < 4 s	none/slow	none/slow
Core Bounce GWs	strong		
Convection/ SASI GWs	none/weak		
Neutrino GWs	large h <i>,</i> low energy		
Rotational 3D Instability GWs	strong, though competition with MRI		
PNS g-mode GWs	none		

Mechanism / Feature	MHD Mechanism	Acoustic Mechanism	Neutrino Mechanism
Progenitor Rotation	fast, P ₀ < 4 s	none/slow	none/slow
Core Bounce GWs	strong	none/weak	
Convection/ SASI GWs	none/weak	moderate	
Neutrino GWs	large h <i>,</i> low energy	moderate h, low energy	
Rotational 3D Instability GWs	strong, though competition with MRI	none	
PNS g-mode GWs	none	very strong	

Mechanism / Feature	MHD Mechanism	Acoustic Mechanism	Neutrino Mechanism
Progenitor Rotation	fast, P ₀ < 4 s	none/slow	none/slow
Core Bounce GWs	strong	none/weak	none/weak
Convection/ SASI GWs	none/weak	moderate	moderate
Neutrino GWs	large h <i>,</i> low energy	moderate h, low energy	moderate h, low energy
Rotational 3D Instability GWs	strong, though competition with MRI	none	none
PNS g-mode GWs	none	very strong	weak

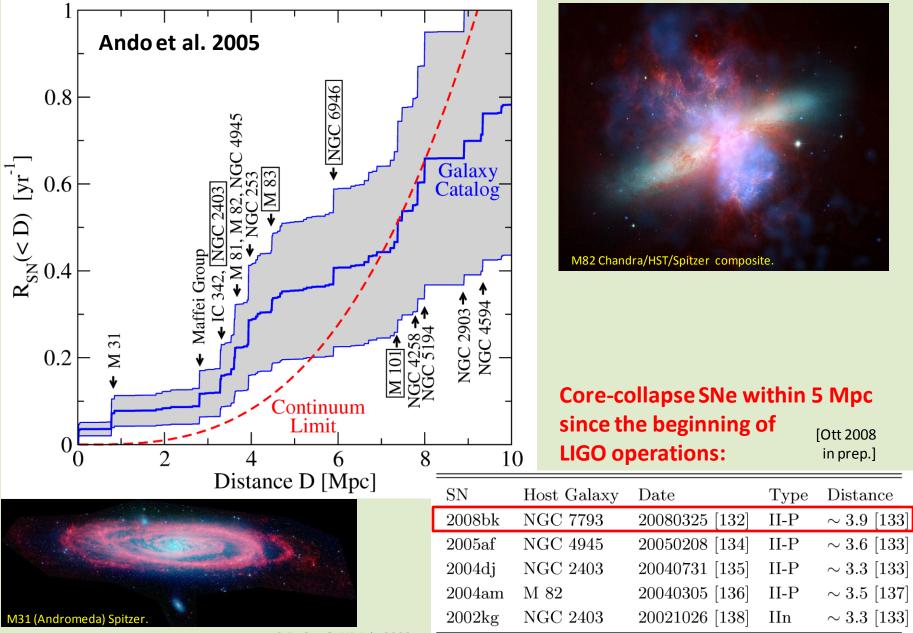
 Galactic SN necessary with LIGO I,
 Caution: Explosion Advanced LIGO: Local Group
 mechanisms may "mix"!

_	Mechanism / Feature	MHD Mechanism	Acoustic Mechanism	Neutrino Mechanism	
	Progenitor Rotation	fast, P ₀ < 4 s	none/slow	none/slow	
		strong	none/weak	8 <mark></mark>	
$ \begin{array}{c c} h_{+}^{e/p} & (10^{-21} \text{ at } 10 \text{ kpc}) \\ e & - b & + & e & - & 0 \\ e & - & 1 & - & 1 & - & - & - \\ e & - & 1 & - & 1 & - & - & - & - \\ e & - & - & 1 & - & 1 & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - \\ e & - & - & - & - & - & - & - & - & - &$		none/weak	moderate (10 ⁻²¹ at 10 kpc)	4 2 0 -2 -2	
	$ s20A1000\beta 1.80 h_+ equator$ $ s20A1000\beta 1.80 h_+ pole$	large h <i>,</i> low energy	mandamatah +	$ \begin{array}{c} -4 \\ -6 \\ -8 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 1.2 \end{array} $	1.4
0	20 40 60 80	strong, though competition with MRI	none	t - t _{bounce} (ms)	1.7
	PNS g-mode GWs	none	very strong	weak	

 Galactic SN necessary with LIGO I,
 Caution: Explosion Advanced LIGO: Local Group
 mechanisms may "mix"!

The Sad Truth or Supernova Rates and The Reach of LIGO.

Core-Collapse Supernova Rates


- Local group of galaxies: $V \sim 30 \text{ Mpc}^3$
 - Milky Way, Andromeda (M31), Triangulum (M33)
 - + \sim 30 small galaxies/satellite galaxies (incl. SMC & LMC).

Galaxy	Distance	Core-Collapse SN Rate	
	(kpc)	$(100 \text{ yr})^{-1}$	_
Milky Way	0-~15	0.50-2.50	
LMC	~ 50	0.10 - 0.50	
SMC	~ 60	0.06 - 0.12	
M31	~ 770	0.20 - 1.20	
M33	$\sim \! 840$	0.16 - 0.68	
IC 10	~ 750	0.05 -0.11	Comp
IC 1613	\sim 770	~ 0.04	long lis
NGC 6822	~520	~ 0.04	e.g. Ca den Be

Compiled from long list of references, e.g. Cappellaro et al., den Bergh & Tammann.

- Local group: worst case 1 SN in 90 years, best case 1 SN in 20 years.
- Most local group events with ~100 kpc from Earth.
- Next jump in rate around M82 at 3.5 Mpc.

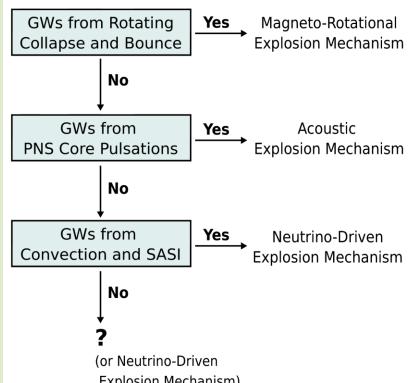
Nearby Core-Collapse Supernovae

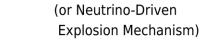
C. D. Ott @ IHP July 2008

SN 2008bk

- SN 2008bk (type II-p) discovered on 03/25/08.
 Core collapse between 02/15 and 03/05.
- LIGO L1 & H1 and VIRGO down for upgrades. LIGO H2 and GEO600 in Astrowatch mode.

	Process Model I		LIGO2 4 km	LIGO L1/H1	LIGO H2	GEO600	VIRGO
	Rotating Collapse	s11A2O13 [20]	0.124	0.008	0.005	0.001	0.009
	& Bounce	s20A2O09 [20]	0.130	0.008	0.006	< 0.001	0.010
		s40A3O12 [20]	0.214	0.024	0.013	< 0.001	0.018
	Rotational Instability	s20A2B4 [44, 52]	0.319	0.021	0.014	0.003	0.022
		$s20A2B4 (\times 5) [44, 52]$	0.713	0.047	0.031	0.007	0.049
	PNS g -modes	s11.2 [21]	0.147	0.006	0.005	0.002	0.009
		s15.0 [21]	0.454	0.021	0.015	0.006	0.027
C/M	$-\int_{-\infty}^{\infty} d\ln f \frac{h_{\rm char}^2}{h_{\rm char}^2}$	s25.0 [21]	0.612	0.029	0.020	0.007	0.037
$S/N = \sqrt{\int_0^\infty d\ln f rac{\mu_{ m char}}{h_{ m rms}^2}}$	$s25.0 (\times 2)[21]$	0.866	0.041	0.029	0.009	0.052	
		s25WW [22]	5.331	0.217	0.151	0.057	0.328


 H2 & GEO600 should not have seen anything. Burst-search underway. Thanks: Erik Katsavounidis & Michael Landry


[Ott 2008]

• Even LIGO 2 would have had trouble seeing a core-collapse SN at 4 Mpc.

Summary & Conclusions

- There are at least 3 ways in which simulations manage to blow up massive stars.
- Mechanisms sufficiently different to allow a schematic "decision diagram" based on GW observations:
- Gravitational waves from a galactic/SMC/LMC SN may help constrain the explosion mechanism. More distant SNe can help set upper limits.
- Rotating collapse/bounce waveforms becoming robust; other emission processes need more & better modeling.

