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It’s the

economy,
stupid.

multi-D,

Did he just say 
g-modes?!?

Won’t they emit 
gravitational waves 

like crazy?

It’s all about convection, 
the SASI, rotation with 

MHD, and the g-modes! 
Mr. Chairman, if we have 
to run this model for 100 

years to get the answer, we 
will do just that!

Even the French, Japanese, 
Swiss, and Germans are 

doing it!!!

C. D. Ott @ IHP July 2008

Yeah right, show 
me robust and  
powerful 2D 

neutrino-driven 
explosions! Got to 
go straight to 3+1 

GRRMHD, Bill!

It’s a 
gravity 
bomb!

The election year 2008 in the light of recent 
advances in core-collapse supernova theory.



Blowing up Massive Stars: 
Core-Collapse SN Mechanisms
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• Standard Neutrino mechanism works in 1D for lowest-mass 
massive stars (O-Ne-Mg cores).  
2D: accretion induced collapse with rapid rotation.

• More massive progenitors: Multi-D effects probably crucial:
Convection, accretion shock instabilities, rotation, MHD, PNS pulsations.

2D/3D Neutrino 
Mechanism

+ ν energy deposition.

+ Convection/Standing-
Accretion-Shock Insta-
bility (SASI) & soft EOS.
-> 11.2 MSUN, 15 MSUN
[Buras et al. ’06, Marek & Janka ‘07]

+ Si/O burning.
[Bruenn et al. ’06, Mezzacappa et al. ‘07]

MHD-Jet 
Mechanism

+ Rapid Rotation
+ B-field amplification:

flux compression, MRI,
winding, dynamos

+ Robust, early jet-driven
explosions (up to 10 B).
[e.g., Burrows et al. ‘07, Wilson et al. ‘05,
Yamada & Sawai ‘04, Mizuno et al. ‘04, 
Akiyama et al. ’03, ’05, Shibata et al. ‘06]

Acoustic 
Mechanism

+ Excitation of PNS g-mode

pulsations by accretion/ 
SASI/turbulence.

+ Damping via emission of 
strong sound waves that 
steepen to shocks.

+ Robust, late explosions.
[Burrows et al. ‘06, ’07, Ott et al. ’07,
but: Weinberg & Quatert ’07]

[Kitaura et al. 2006, Burrows 1987, 2007c]

[Dessart et al. ‘06, ‘08]



Constraining the 
Core-Collapse Supernova Explosion Mechanism
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Classical Observational Astronomy:
• Explosion morphology, lightcurve,

energy, chemical composition.
• Progenitor type / mass.
• Pulsar kicks.
• Neutron star mass.

C. D. Ott @ IHP July 2008

Secondary
Observables



Constraining the 
Core-Collapse Supernova Explosion Mechanism
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Neutrino and Gravitational Wave Astronomy
• Direct “live” information from the

supernova engine.
• GWs: Directly linked to the ubiquitous 

multi-D dynamics in the postshock region
and in the PNS.

Primary
Observables

Chandra



GW Emission Processes in Core-Collapse SNe
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• Rotating core collapse and core bounce.

• Postbounce convection and SASI.

• Anisotropic neutrino emission.

• PNS core pulsations.

• PNS dynamical rotational 3D instabilities.

• Aspherical outflows 
(jets; precollapse asymmetries)

Newtonian Quadrupole Formula:



Rotating Core Collapse and Bounce
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• Collapse: Angular momentum 
conservation leads to spin up &
rotational deformation of inner
core.

• At core bounce: Very large
accelerations -> rapidly changing
mass quadrupole moment.

• Most extensively studied
GW emission in core collapse:

Ruffini & Wheeler 1971
Thuan & Ostriker 1974,
Saenz & Shapiro 1978-1981
Moncrief 1979
Mueller 1981
Detweiler & Lindblom 1981
Turner & Wagoner 1979

Seidel et al.  late 1980s
Finn & Evans 1990
Moenchmeyer et al. 1991
Bonazzola & Marck 1993
Yamada & Sato 1995
Zwerger & Mueller 1997
Dimmelmeier et al. 2002
Ott et al. 2004
Shibata & Sekiguchi 2004



New Results: Rotating Collapse and Bounce
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[Dimmelmeier et al. 2008, Dimmelmeier et al. 2007, Ott  et al. 2007, Ott 2006]

• First 2D/3D GR simulations with
hot microphysical EOS & 
deleptonization during collapse.

• GW signature determined by 
inner core mass, inner core 
angular momentum, 
and (to some extent) nuclear EOS.

• GW signal of generic shape;
no “multiple centrifugal bounce”
or fizzlers.

• GWs from “quickly” spinning
cores (precollapse P0 < 10 s) 
“detectable” throughout the 
Milky Way.

• Important finding: 
Cores stay axisymmetric through bounce and early postbounce phase.



New Extended 2D GR Model Set
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[Dimmelmeier, Ott, Marek, and Janka 2008 submitted, Dimmelmeier et al. 2007ab, Ott et al. 2007]

• >140 2D GR 
models with Ye(ρ) 
parametrization.

• 6 presupernova 
models.

• Slow to very rapid 
rotation.

• Solid-body to 
moderately 
differential 
rotation.

• 2 finite-temp. 
nuclear EOSs.

1) slow rotation, pressure-dominated 

bounce, prompt convection

2) moderately-rapid rotation, pressure-

dominated bounce

3) rapid rotation, pressure-dominated, 

rotation-influenced bounce

4) single centrifugal bounce.

Results
• GW signature of rotating collapse

multi-degenerate.
• Key parameters:
 Precollapse central Ω.
 Precollapse iron-core mass/entropy.



• Classical picture: High T/|W| instabilities. 

Azimuthal modes exp(im ). m=2 “bar-modes” 
(T/|W|)dynamical = 0.27, (T/|W|)secular 0.14.
Numbers hold roughly in GR and moderate differential rotation.

PNS Spin and Rotational Instabilities
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[e.g., Chandrasekhar 1969]

[Dimmelmeier et al. 2008, Ott et al. 2007, Ott et al. 2006]

[e.g., Baiotti et al. 2007]

C. D. Ott @ IHP July 2008

[Shibata et al. 2000, 3+1 GR simulations]



Rapid Rotation and Nonaxisymmetric Dynamics
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3D GR simulation Ott 2006, rendition by R. Kähler, Zuse Institute, Berlin 

WARNING: Crazy toy model!!!



• Classical picture: High T/|W| instabilities. 

Azimuthal modes exp(im ). m=2 “bar-modes” 
(T/|W|)dynamical = 0.27, (T/|W|)secular 0.14.
Numbers hold roughly in GR and moderate differential rotation.

PNS Spin and Rotational Instabilities
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[e.g., Chandrasekhar 1969]

[Dimmelmeier et al. 2008 arXiv 0806.5953, Ott et al. 2007, Ott et al. 2006]

[e.g., Baiotti et al. 2007]

• Can a realistic PNSs reach such high T/|W|?

C. D. Ott @ IHP July 2008

• Direct numerical simulation:
No – Collapsing cores hit 
rotational barrier.

• Critical T/|W| (secular/ 
dynamical) attainable 
during PNS cooling. 

• Don’t forget MHD!

[Ott et al. PRL 2007 & CQG 2007, 
Dimmelmeier, Ott et al. 2008, arxiv 0806.4953]



• Dynamical rotational 
instability at low T/|W|.

• Dominant m=1 mode; 
m={2,3} modes mixed in 
(radial & temporal variation).

• Mechanism:
Corotation instability (?)
Resonance of unstable mode 
with background fluid at 
corotation point(s).

• Spiral density waves –
relationship to accretion 
and galactic disks? SASI?
-> angular momentum transport.

A Low-T/|W| Rotational Instability
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[e.g., Centrella et al. 2001,  Saijo 2003, Saijo & Yoshida 2006, 
Ott et al. 2005, Ou & Tohline 2006, Cerdá et al. 2007b]

• Note: PNS embedded in SN core and continuously accreting angular 
momentum. Cannot be described by an equilibrium NS model!



GW Emission, Model s20A2B4
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Polar Observer +

Polar Observer xEquatorial Observer x

Equatorial Observer +



GW Emission vs. Detector Noise
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• 3D component: lower in amplitude than core-bounce GW spike, 
but greater in energy! Emission in narrow frequency band around
900—930 Hz ( 2 x pattern speed of the unstable mode!) models.



Switching Gears:

GWs emitted by 
Convection, SASI, Neutrinos, 

Global Asymmetries,
&

PNS core g-modes
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(Most) Calculations performed with the axisymmetric Newtonian 
VULCAN/2D radiation-(magneto)hydrodynamics code.

[Livne et al. ‘93, ‘04, ‘07, Burrow et al. ‘06, ‘07abc, Dessart et al. ‘06,ab ’07, Ott et al. ‘06ab, ‘08]



Convection
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[e.g., Janka & Müller 96, Burrows et al. 95, Mezzacappa et al. 98, Swesty & Myra 06, Dessart et al. 06 & references therein.]

• Prompt postbounce convection.

• Postbounce neutrino-driven convection in gain layer generic 
to all non- and slowly rotating SN cores.

• PNS core convection.

[Dessart et al. 2006][Ott et al. 2007]



GWs from Prompt Convection
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• Negative entropy gradient left behind by stalling shock drives prompt 
postbounce convection. [e.g., Burrows & Hayes 1992]

• Gradient to some extent smoothed out by neutrino emission.
• Growth and duration of convection strongly dependent on 

seed perturbations. -> Need parameter study to understand systematics.
• Real stars inevitably will have seed perturbations. Magnitude unclear.

[Ott 2008 submitted, Dimmelmeier et al. ‘08, Scheidegger et al. ‘08, Ott et al. ‘06, Kotake et al. ‘03]

[Ott 2008]

[VULCAN/2D simulations
with varying resolution]



GWs from Convection & SASI
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m15b6; very slowly rotating

• Mixture of PNS and post-shock convection/turbulence.
• Convection (partially) stabilized by rapid rotation (positive j gradient)
• Broad-band, low-amplitude GW emission.
• EGW < 10-11 — 10-9 M  c2

• In addition: low-frequency emission due to neutrinos. 
(not shown here; see talk by Kei Kotake this afternoon!)

[Ott et al. 2008 in prep., Ott et al. 2006, Müller et al. 2004, Müller & Janka 1997]



GWs from Anisotropic Neutrino Emission
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[Epstein 1978, Burrows & Hayes 1996, Janka & Müller 1997, Müller et al. 2004, Dessart et al. 2006, Ott 2006, Ott et al. 2008 in prep.]

• Any accelerated mass-energy quadrupole
will emit GWs. Anisotropic neutrino radiation:

• Anisotropic neutrino emission in core-collapse SNe:
• Convective overturn: small-scale variations.
• Rapid rotation: large-scale anisotropy.
• Large-scale asymmetries: large-scale anisotropy.
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• GW
“Memory”

[Dessart et al. 2006, 
Accretion-Induced Collapse



GWs from Aspherical Outflows
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[Burrows & Hayes 1996, Fryer et al. 2004; in the MHD context: Kotake et al. 2004, Obergaulinger et al. 2005, 2006]

• Precollapse inhomogeneities in nuclear silicon/oxygen burning may
be large, leading to density perturbations O(10%). [Bazan & Arnett ‘97, Meakin et al. ‘06].

• May result in asymmetric explosions (-> pulsar recoils) and emission of 
GW burst (with memory!) from mass motions and neutrinos.

• Somewhat unexplored: Only 2 studies; most stellar evolution is done in 1D. Would 
need large parameter study.

• Aspherical outflows also in jet-driven explosions: See Kei Kotake’s talk!

[Burrows & Hayes 1996]



Unstable Protoneutron Star Core g-modes &
The Acoustic Supernova Mechanism
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• SASI-modulated supersonic accretion streams and SASI 
generated turbulence excite lowest-order (l=1) buoyancy 
mode in the PNS. Eigenfrequency f 300 Hz 30%.

[Burrows et al. 2006, 2007b/c, Ott, Burrows et al. 2006]

• g-modes reach large 
amplitudes 600—
1000 ms after 
bounce.

• Damping by strong 
sound waves that 
steepen into shocks; 
deposit energy in the 
stalled shock.

• Drive  1 B 
explosions at 
late times.
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PNS core oscillations, Burrows et al. 2006, 2007; Ott et al. 2006



GWs from PNS core g-modes:
The GW Signature of the Acoustic Mechanism
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s25.0 from Burrows et al. 2007

Core Bounce

Convection & SASI

early g-modes

late-time PNS g-modes

• Core bounce: 
Rotation,
perturbations, 
prompt convection.

• Convection: PNS 
and -driven.

• g-modes: 
l=2 components 
emit GWs.

• But: g-modes may
saturate at low level. 
[Weinberg & Quatert 2008]

[Ott 2008, Ott et al. 2006]



GW Spectra and LIGO Sensitivity 
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[Ott 2008 in prep., Ott et al. 2006, Burrows et al. 2007]

• EGW 10-8 — 10-6 M  c2 , one model 8 x 10-5 M  c2. 

• Progenitor mass (= accretion rate) dependence.



Time-Frequency Analysis of the GW Power Spectrum
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Models s15.0WHW02



Putting Things Together:

GWs as Indicators for 
the Core-Collapse Supernova

Explosion Mechanism 
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Mechanism GW Emission Process 

Characteristic GW Signature



GWs as Indicators for the SN Mechanism 
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Mechanism /
Feature

MHD 
Mechanism

Acoustic 
Mechanism

Neutrino 
Mechanism

Progenitor Rotation fast, P0 < 4 s none/slow none/slow

Core Bounce GWs

Convection/
SASI GWs

Neutrino GWs

Rotational 3D 
Instability GWs

PNS g-mode GWs



GWs as Indicators for the SN Mechanism 

C. D. Ott @ IHP July 2008 29

Mechanism /
Feature

MHD 
Mechanism

Acoustic 
Mechanism

Neutrino 
Mechanism

Progenitor Rotation fast, P0 < 4 s none/slow none/slow

Core Bounce GWs strong

Convection/
SASI GWs

none/weak

Neutrino GWs large h, 
low energy

Rotational 3D 
Instability GWs

strong, though
competition 
with MRI

PNS g-mode GWs none



GWs as Indicators for the SN Mechanism 
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Mechanism /
Feature

MHD 
Mechanism

Acoustic 
Mechanism

Neutrino 
Mechanism

Progenitor Rotation fast, P0 < 4 s none/slow none/slow

Core Bounce GWs strong none/weak

Convection/
SASI GWs

none/weak moderate

Neutrino GWs large h, 
low energy

moderate h, 
low energy

Rotational 3D 
Instability GWs

strong, though
competition 
with MRI

none

PNS g-mode GWs none very strong



GWs as Indicators for the SN Mechanism 
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Mechanism /
Feature

MHD 
Mechanism

Acoustic 
Mechanism

Neutrino 
Mechanism

Progenitor Rotation fast, P0 < 4 s none/slow none/slow

Core Bounce GWs strong none/weak none/weak

Convection/
SASI GWs

none/weak moderate moderate

Neutrino GWs large h, 
low energy

moderate h, 
low energy

moderate h, 
low energy

Rotational 3D 
Instability GWs

strong, though
competition 
with MRI

none none

PNS g-mode GWs none very strong weak

• Galactic SN necessary with LIGO I, 
Advanced LIGO: Local Group

• Caution: Explosion 
mechanisms may “mix”!



GWs as Indicators for the SN Mechanism 
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Mechanism /
Feature

MHD 
Mechanism

Acoustic 
Mechanism

Neutrino 
Mechanism

Progenitor Rotation fast, P0 < 4 s none/slow none/slow

Core Bounce GWs strong none/weak none/weak

Convection/
SASI GWs

none/weak moderate moderate

Neutrino GWs large h, 
low energy

moderate h, 
low energy

moderate h, 
low energy

Rotational 3D 
Instability GWs

strong, though
competition 
with MRI

none none

PNS g-mode GWs none very strong weak

• Galactic SN necessary with LIGO I, 
Advanced LIGO: Local Group

• Caution: Explosion 
mechanisms may “mix”!



The Sad Truth 
or

Supernova Rates and 
The Reach of LIGO.
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Core-Collapse Supernova Rates
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• Local group of galaxies: V 30 Mpc3

– Milky Way, Andromeda (M31), Triangulum (M33) 
+ 30 small galaxies/satellite galaxies (incl. SMC & LMC).

• Local group: worst case 1 SN in 90 years, best case 1 SN in 20 years.

• Most local group events with 100 kpc from Earth.

• Next jump in rate around M82 at 3.5 Mpc. 

Compiled from
long list of references,
e.g. Cappellaro et al., 
den Bergh & Tammann. 



Nearby Core-Collapse Supernovae
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Core-collapse SNe within 5 Mpc
since the beginning of 
LIGO operations:

M82 Chandra/HST/Spitzer composite.

M31 (Andromeda) Spitzer.

Ando et al. 2005

[Ott 2008
in prep.]



SN 2008bk
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• SN 2008bk (type II-p) discovered on 03/25/08. 
Core collapse between 02/15 and 03/05.

• LIGO L1 & H1 and VIRGO down for upgrades.
LIGO H2 and GEO600 in Astrowatch mode. B. Monard

• H2 & GEO600 should not have seen anything.
Burst-search underway.

• Even LIGO 2 would have had trouble seeing a core-collapse 
SN at 4 Mpc.

Thanks:
Erik Katsavounidis &
Michael Landry

[Ott 2008]



Summary & Conclusions
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• There are at least 3 ways in which
simulations manage to blow up massive stars.

• Mechanisms sufficiently different to allow a schematic 
“decision diagram” based on GW observations:

• Gravitational waves from a 
galactic/SMC/LMC SN may
help constrain the explosion 
mechanism. More distant 
SNe can help set upper limits.

• Rotating collapse/bounce 
waveforms becoming robust; 
other emission processes 
need more & better modeling.


