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Situation

* Neutrino cooling
of PNS.

* Neutrino heating
in gainregion.

€ .

¢ * Convectionand
@)

= 0 SASI.

- Neutrino Mechanism
N failsin 1D.

Can we make it
workin 2D (3D)?

No neutrino-driven
explosionsin MGFLD
VULCAN/2D --
Sensitivity to

transport method?
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Core-Collapse SNe and Neutrino Transport
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e Full Boltzmann problem: 7D -> 3D space, 3D momentum space, time.

* Frequent approximations in multi-D core-collapse SN simulations:
¢ Ray-by-Ray: 1D Space, 2D momentum SpPacCe [eg.,Burasetal. 06, Bruennetal.06, Marek & Janka 07]

e 2D multi-group flux-limit diffusion (MGFLD): [e.g. Swesty & Myra 2006, Burrows 2007a]
evolve mean-intensity J; 2D space, 1D momentum space (energy).

* Additional various common simplifications to
(1) collision/source/sink term and (2) fluid-velocity dependence.

+AVIF i, e)=Z[F R, e)p T, Y]

* Here: approach solution of 6D problem (2D space, 3D momentum space, time)

* Multi-Group multi-angle discrete-ordinate (S,) solver
in the radiation-MHD code VULCAN/2D. ILivneetal. 2004]

e Comparison with MGFLD within VULCAN/2D; MGFLD “good enough”?



Our Work: Setup and Implementation

[Ottet al. 2008, arxiv:0804.239, ApJ accepted]

* VULCAN/2D: Z

= Unsplit 2D ALE
(magneto-)hydrodynamics.

" MGFLD & discrete-ordinate (S, )
Boltzmann solver. [Livneetal. 2004] |
But: No energy redistribution/ inelastic z
scattering, no velocity dependence. |

» MGFLD Flux limiter: 2D variant of

Bruenn 1995.

= S, calculations with 8,12, 16
J-anglesin momentum space.
In 2D: also radiation-momentum
(@-angles [0,mt] -> 40, 92, 0r 162 X
angular points at each spatial location,
tiling the hemisphere uniformly
in solid angle.

= 16 energy groups, 3 neutrino “species”.



Modifications to the Solver

[Ottet al. 2008, arxiv:0804.239, ApJ accepted]

* S, — MGFLD hybrid scheme:

= S, solverin VULCAN/2D
converges slowly at S
high optical depth.
->time step limitation.

" |dea:
Use MGFLD at high
optical depths and
transition to Sn at

intermediate optical MG FLD
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= Set up boundary data
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according to Eddington

, L oo = Matching at t>2, R =20km.
I(n) = JMGFLD + 3(n ' HMGFLD) = Efficient at high optical depths
and accurate in semi-trans-
parent regions.

approximation:



Postbounce SN Models:
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20-solar mass pre-SN model of Woosley, Heger & Weaver 2002.

Nonrotating (s20.nr) and rotating model (s20.1, precollapse central P, = 2's, Q, = rad/s).
Evolved to 160 ms postbounce with MGFLD, then stationary-state S, solution.
Steady-State solutions with Sg,S,5,5:¢ ->40,92,162 total angular zones.
Long-term (~400 ms) time-dependent calculations with Sg.
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The Radiation Field

R = 30 km
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Eddington Tensor Components
K = ifﬁ-ﬁldﬁ
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In axisymmetry and without velocity dependence:

4 independent components (3 diagonal, 1 off-diagonal).
(note: 1D/Ray-by-Ray -> only one “Eddington factor”)

Here: spherical coordinates; off-diagonal term K.q small (<1%).
S, “striping” considerable outside R ~200 km.
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Eddington Tensor Components
K = L]{ﬁ-ﬁldQ
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* Inaxisymmetry and without velocity dependence:
4 independent components (3 diagonal, 1 off-diagonal).
(note: 1D/Ray-by-Ray -> only one “Eddington factor”)

* Here: spherical coordinates; off-diagonal term K.q small (<1%).

e S, “striping” considerable outside R ~200 km.
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Comparing with MGFLD.



Comparing with MGFLD

MGFLD reminder:
= Operates on mean intensity J.
= Good approximation in the diffusion limit.
= Can handle streaming limit with flux limiter.
= Must “interpolate” between diffusion / streaming using the flux limiter.

Neutrino heating: X, L, X, L
e= 2o b B (1) + 3 a7 )

A" 28 4
[Messer et al. 1998]

Relevant quantities:
Luminosity, mean inverse flux factor, mean rms neutrino energies.

Mean inverse flux factor: 1 f dE, J(Eu, ,/Z,)
F deI/ HT(EIMVi)

Previous work all 1D: Janka et al. 1992, Yamada et al. 1999, Messer et al. 1998,
Burrows et al. 2008 (all steady-state); Liebendorfer et al. 2004 (1D evolution).
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Neutrino Energy Deposition

Neutrino Gain and Loss (1020 erg s g7") Neutrino Gain and Loss (10% erg s™ g7")
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s20.nr: Little difference between MGFLD and S, at 160 ms after bounce.
s20.m: Large (factor ~3) polar differences in specific heating rates.
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The Rotating Model s20.1t: Flux Asymmetry
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Radiation field oblate in PNS, prolate outside. Strong flux-enhancement along poles.

* Snapshot at 160 ms: Pole/Equator flux asymmetry much better captured by S..
MGFLD smoothes-out asymmetries at large radii/low optical depths.



Evolution Calculations: Nonrotating s20.nr
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Evolution Calculations: Rotating s20.1t

Entropy [ka/baryon]
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Evolution Calculations: Energy Dep05|t|on

* 520.nr:

160->500 ms

Up to 30% larger
heatingrates at late
times predicted

by multi-angle
transport.

e s20.1t

160 ->550ms
Despite large polar
enhancementno
clearand consistent
enhancement of total
heating.
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Shock Radii
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S, leads to somewhat larger shock radii / greater excursions.

Pronounced initial polar shock expansion in s20.1.
Model appears to “settle” at new quasi-equilibrium.

No sign of explosion.
s20.1tdevelops SASI at late times, faster/stronger in S, variant.
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Summary: 2D MGFLD vs. 2D S,

S, superior in capturing global and local radiation-field
asymmetries associated with aspherical hydrodynamics.

Increased (local) neutrino heating, in particular along the
poles in the rotating model (-> earlier/stronger SASI);
larger SASI shock excursions in nonrotating model.

Strong feedback in the SN problem;
S, and MGFLD both do not produce neutrino-driven
explosions in our VULCAN/2D simulations.

What else is needed?
3D? GR? Microphysics/EOS? O(v/c) transport?



