2D Multi-Angle Multi-Group Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores

[arxiv:0804.0239, accepted for publication in ApJ]

Christian David Ott

JINA Postdoctoral Fellow

Steward Observatory & Department of Astronomy, The University of Arizona cott@as.arizona.edu Prize Postdoctoral Fellow

TAPIR Group, California Institute of Technology

Collaborators @ Princeton/Marseille/Arizona/Washington/Jerusalem:

Adam Burrows, Eli Livne, Luc Dessart and Jeremiah Murphy

Postbounce Situation

- Neutrino cooling of PNS.
- Neutrino heating in gain region.
- Convection and SASI.

Neutrino Mechanism fails in 1D.

Can we make it work in 2D (3D)?

No neutrino-driven explosions in MGFLD VULCAN/2D --Sensitivity to transport method?

Core-Collapse SNe and Neutrino Transport

 $\begin{aligned} & \overset{\text{Hiding ugly}}{\text{details:}} \ \frac{1}{c} \frac{\partial I(\vec{r}, \vec{n}, \epsilon_{\nu})}{\partial t} + \vec{n} \, \vec{\nabla} I(\vec{r}, \vec{n}, \epsilon_{\nu}) = \Xi[I(\vec{r}, \vec{n}, \epsilon_{\nu}), \rho, T, Y_e] \\ & \overline{J} = \frac{1}{4\pi} \oint I d\Omega \quad \vec{H} = \frac{1}{4\pi} \oint \vec{n} I d\Omega \quad \mathbf{K} = \frac{1}{4\pi} \oint \vec{n} \cdot \vec{n} \, I d\Omega \end{aligned}$

- Full Boltzmann problem: 7D -> 3D space, 3D momentum space, time.
- Frequent approximations in multi-D core-collapse SN simulations:
 - Ray-by-Ray: 1D space, 2D momentum space [e.g., Buras et al. 06, Bruenn et al. 06, Marek & Janka 07]
 - **2D multi-group flux-limit diffusion** (MGFLD): [e.g., Swesty & Myra 2006, Burrows 2007a] evolve mean-intensity J; 2D space, 1D momentum space (energy).
 - Additional various common simplifications to
 (1) collision/source/sink term and (2) fluid-velocity dependence.
- Here: approach solution of 6D problem (2D space, 3D momentum space, time)
 - Multi-Group multi-angle discrete-ordinate (S_n) solver in the radiation-MHD code VULCAN/2D. [Livne et al. 2004]
 - Comparison with MGFLD within VULCAN/2D; MGFLD "good enough"?

Our Work: Setup and Implementation

[Ott et al. 2008, arxiv:0804.239, ApJ accepted]

• VULCAN/2D:

- Unsplit 2D ALE (magneto-)hydrodynamics.
- MGFLD & discrete-ordinate (S_n) Boltzmann solver. [Livne et al. 2004] But: No energy redistribution/ inelastic scattering, no velocity dependence.
- MGFLD Flux limiter: 2D variant of Bruenn 1995.
- S_n calculations with 8, 12, 16
 9-angles in momentum space. In 2D: also radiation-momentum
 φ-angles [0,π] -> 40, 92, or 162 angular points at each spatial location, tiling the hemisphere uniformly in solid angle.
- 16 energy groups, 3 neutrino "species".

Modifications to the Solver

[Ott et al. 2008, arxiv:0804.239, ApJ accepted]

S_n – MGFLD hybrid scheme:

- S_n solver in VULCAN/2D converges slowly at high optical depth.
 time step limitation.
 - Idea:
 Use MGFLD at high optical depths and transition to Sn at intermediate optical depth.
- Set up boundary data according to Eddington approximation:

$$I(\vec{n}) = J_{\rm MGFLD} + 3(\vec{n} \cdot \vec{H}_{\rm MGFLD})$$

- Matching at $\tau \ge 2$, R = 20 km.
- Efficient at high optical depths and accurate in semi-transparent regions.

C. D. Ott @ IHP 07/2008

Postbounce SN Models:

- 20-solar mass pre-SN model of Woosley, Heger & Weaver 2002.
- Nonrotating (s20.nr) and rotating model (s20. π , precollapse central P₀ = 2 s, $\Omega_0 = \pi$ rad/s).
- Evolved to 160 ms postbounce with MGFLD, then stationary-state S_n solution.
- Steady-State solutions with S₈, S₁₂, S₁₆ -> 40, 92, 162 total angular zones.
- Long-term (~400 ms) time-dependent calculations with S₈.

The Radiation Field

- In axisymmetry and without velocity dependence: 4 independent components (3 diagonal, 1 off-diagonal). (note: 1D/Ray-by-Ray -> only one "Eddington factor")
- Here: spherical coordinates; off-diagonal term K_{r9} small (<1%).
- S_n "striping" considerable outside R ~200 km.

Eddington Tensor Components $\mathbf{K} = \frac{1}{4\pi} \oint \vec{n} \cdot \vec{n} I d\Omega$

- In axisymmetry and without velocity dependence: 4 independent components (3 diagonal, 1 off-diagonal). (note: 1D/Ray-by-Ray -> only one "Eddington factor")
- Here: spherical coordinates; off-diagonal term K_{r9} small (<1%).
- S_n "striping" considerable outside R ~200 km.

Comparing with MGFLD.

Comparing with MGFLD

- MGFLD reminder:
 - Operates on mean intensity J.
 - Good approximation in the diffusion limit.
 - Can handle streaming limit with flux limiter.
 - Must "interpolate" between diffusion / streaming using the flux limiter.
- Neutrino heating:

$$\dot{\epsilon} = \frac{X_n}{\lambda_0^a} \frac{L_{\nu_e}}{4\pi r^2} \langle E_{\nu_e}^2 \rangle \left\langle \frac{1}{\overline{F}} \right\rangle + \frac{X_p}{\overline{\lambda}_0^a} \frac{L_{\overline{\nu}_e}}{4\pi r^2} \langle E_{\overline{\nu}_e}^2 \rangle \left\langle \frac{1}{\overline{F}} \right\rangle$$
[Messer et al. 1998]

• Relevant quantities:

Luminosity, mean inverse flux factor, mean rms neutrino energies.

• Mean inverse flux factor:

$$\left\langle \frac{1}{\bar{\mathsf{F}}_{\nu_i}} \right\rangle \frac{\int dE_{\nu} J(E_{\nu},\nu_i)}{\int dE_{\nu} H_r(E_{\nu},\nu_i)}$$

 Previous work all 1D: Janka et al. 1992, Yamada et al. 1999, Messer et al. 1998, Burrows et al. 2008 (all steady-state); Liebendörfer et al. 2004 (1D evolution).

Neutrino Energy Deposition

- s20.nr: Little difference between MGFLD and S_n at 160 ms after bounce.
- s20. π : Large (factor ~3) polar differences in specific heating rates.

The Rotating Model s20.π: Flux Asymmetry

- Radiation field oblate in PNS, prolate outside. Strong flux-enhancement along poles.
- Snapshot at 160 ms: Pole/Equator flux asymmetry much better captured by S_n. MGFLD smoothes-out asymmetries at large radii/low optical depths.

Evolution Calculations: Nonrotating s20.nr

Evolution Calculations: Rotating s20. π

Evolution Calculations: Energy Deposition

- s20.nr: 160 -> 500 ms Up to 30% larger heating rates at late times predicted by multi-angle transport.
- s20.π: 160 -> 550 ms Despite large polar enhancement no clear and consistent enhancement of total heating.

Shock Radii

- S_n leads to *somewhat* larger shock radii / greater excursions.
- Pronounced initial polar shock expansion in s20.π.
 Model appears to "settle" at new quasi-equilibrium.
- No sign of explosion.
- $s20.\pi$ develops SASI at late times, faster/stronger in S_n variant.

Summary: 2D MGFLD vs. 2D S_n

- S_n superior in capturing global and local radiation-field asymmetries associated with aspherical hydrodynamics.
- Increased (local) neutrino heating, in particular along the poles in the rotating model (-> earlier/stronger SASI); larger SASI shock excursions in nonrotating model.
- Strong feedback in the SN problem;
 S_n and MGFLD both do not produce neutrino-driven explosions in our VULCAN/2D simulations.
- What else is needed?
 3D? GR? Microphysics/EOS? O(v/c) transport?