

Numerical investigation of SASI through a toy model

Jun'ichi SATO,

Thierry Foglizzo and Sébastien Fromang (CEA-Saclay)

•Hydrodynamic instabilities play an important role in **core-collapse SN**.

⇒But its mechanism is still a source of debate.

•"advective-acoustic cycle (AAC)"

(Foglizzo & Tagger 2000; Foglizzo 2001, 2002; Blondin et al. 2003; Burrows et al. 2006; Foglizzo et al. 2007; Ohnishi et al. 2006; Scheck et al. 2008; Yamasaki & Foglizzo 2008)

⇒But some alternate interpretations were proposed. (Blondin 2005; Blondin & Mezzacappa 2006; Laming 2007)

•It is sometimes difficult to recognize the advective-acoustic mechanism in numerical simulations.

⇒We need a simple models where its properties are fully understood.

•Foglizzo (2006) suggested a simple model, to understand the SASI mechanism.

Toy model

- •The toy model describes the basic properties of the advective-acoustic instability.
- •This model is simple enough to allow for a deep understanding of **the instability mechanism** at work.
- The simple set up of the toy model can be used as a benchmark test for numerical simulations.

Toy Model

- We confirm some behavior of the toy model using a numerical simulation and compare to the linear analysis.
- 2. We estimate the numerical resolution required in the simulation of the toy model by comparing to the results of the linear analysis.
- 3. We propose this toy model as a **benchmark test** for SASI simulations.
- 4. We use this toy model to investigate the nonlinear phase of SASI.

Numerical Method

- •We solve the 1D or 2D Euler equation for inviscid gas.
- Numerical convergence depends on the numerical technique; We use AUSMDV scheme (Wada & Liou 1994), which is a second-order upwind explicit scheme.

Separated Toy Model

Problem 1

advected perturbation :

$$\begin{cases} \delta S = \epsilon \cos\left(-\omega_0 t + k_x x + k_z z\right), \\ \frac{\delta \rho}{\rho_{\text{in}}} = \exp\left(-\frac{\gamma - 1}{\gamma} \delta S\right) - 1, \\ \delta v_x = \frac{k_x \omega_0}{\omega_0^2 + k_x^2 v_{\text{in}}^2} \frac{c_{\text{in}}^2}{\gamma} \delta S, \\ \delta v_z = -\frac{k_x^2 v_{\text{in}}}{\omega_0^2 + k_x^2 v_{\text{in}}^2} \frac{c_{\text{in}}^2}{\gamma} \delta S. \end{cases}$$
where $k_x = \frac{2\pi}{L_x}$ and $k_z = \frac{\omega_0}{v_{\text{in}}}$

Movie (Problem 1)

Snap Shots (Problem 1)

Prediction from linear analysis

$$egin{aligned} &\epsilon = 10^{-3} \ &\omega_0 = rac{2\pi imes 2}{ au_{
m aac}}, rac{2\pi imes 4}{ au_{
m aac}}, rac{2\pi imes 6}{ au_{
m aac}} \ & ext{where} \ & au_{
m aac} = rac{1}{ au_{
m in}} rac{1}{ au_{
m in}(1-\mathcal{M}_{
m in})} \end{aligned}$$

•Our simulations with $\Delta z=10^{-4}(=10^{-3} \Delta z_{\nabla})$ in the linear phase can reproduce the linear analytical prediction very well.

We investigate the behavior of the toy model in the non-linear phase by increasing the perturbation amplitude ϵ .

acoustic perturbation :

$$\frac{\delta\rho}{\rho_{\rm in}} = \frac{1 + \mathcal{M}_{\rm in}}{1 + \mathcal{M}_{\rm in}^2} \times \epsilon \cos(-\omega_0 t + k_z z)$$
$$\frac{\delta p}{p_{\rm in}} = \left(1 + \frac{\delta\rho}{\rho_{\rm in}}\right)^{\gamma} - 1, \qquad -2$$
where $\epsilon = 10^{-3}$
$$\omega_0 = \frac{2\pi \times 2}{\tau_{\rm aac}}, \frac{2\pi \times 4}{\tau_{\rm aac}}, \frac{2\pi \times 6}{\tau_{\rm aac}} \qquad -5$$

Temporal evolution of $\delta S/\delta S_{\rm th}$

advected feed back predicted by linear analysis :

$$\delta S_{\rm th} = \frac{\delta p}{p_{\rm in}} \frac{2}{\mathcal{M}_{\rm in}} \frac{1 - \mathcal{M}_{\rm in}^2}{1 + \gamma \mathcal{M}_{\rm in}^2} \left(1 - \frac{\mathcal{M}_{\rm in}^2}{\mathcal{M}_1^2} \right) \times \frac{\mu}{\mu^2 + 2\mu \mathcal{M}_{\rm in} + \mathcal{M}_1^{-2}}.$$

- In the high resolution simulations, the entropy wave generated at the shock contains **spurious high frequencies**.
- •This is a numerical artifact associated with postshock oscillations.

Postshock oscillation is generated when the shock moves slowly with respect to the grid. (Colella & Woodward 1984; Jin & Liu 1996; Blondin et al. 2003; Stiriba & Donat 2003)

Fourier Transform :

$$|a_n|^2 = \left|\frac{2}{T}\int_0^T \frac{\delta S}{\delta S_{\rm th}}e^{i\omega_0 nt}dt\right|^2$$

- $\delta S/\delta S_{\rm th}$ in the simulations with the higher resolutions contains higher frequency components.
- •In the simulation with the highest resolution, $|a_{10}|^2$ achieves around 1%.

(*g*-mode frequency is 10 times higher than SASI frequency.)

•Could it contribute to **g-mode excitation?** This is unlikely, the energy seems negligible.

Dependence of $|a_1|^2$ on Δz

- At the highest resolution, |a₁|²
 obtained from the simulation converges to ~1.
- A very coarse resolution in the linear phase underestimates the entropy production.
- A moderately coarse resolution in the linear phase can overestimate the entropy production by 25%.

Distribution of accuracy for $|a_1|^2$

•The numerical treatment of the advective-acoustic coupling at the shock is controlled by the grid size Δz compared to a advection wavelength λ_{adv} and a shock displacement $\Delta \zeta$.

advection wavelength :

$$\lambda_{
m adv} = rac{2\pi |v_{
m in}|}{\omega_0}$$

shock displacement :

$$\Delta \zeta = \left| \frac{c_{\rm in}^2}{v_1} \frac{\delta S}{\gamma} \frac{1}{\left(1 - v_{\rm in}/v_1\right)^2} \frac{1}{\omega_0} \right|.$$

•due to the shock, 5% accuracy requires:

$$\frac{\lambda_{\text{adv}}}{\Delta z} \ge 100$$
$$\frac{\Delta \zeta}{\Delta z} \ge 0.1$$

Grid size estimates in published simulations 2

We estimate $\,\lambda_{
m adv}/\Delta z\,$ in some published simulations.

advection wavelength : $\lambda_{\mathrm{adv}} = \frac{2\pi |v_{\mathrm{in}}|}{\omega_0}$

- $r_{\rm sh} = 1$

•
$$|v_{\rm in}| \sim \frac{\gamma - 1}{\gamma + 1} \times |v_{\rm ff}| = \frac{1}{7} |v_{\rm ff}|$$

• We use the grid size at the shock position as Δz .

For example, Blondin et al. (2003)

$N_r \frac{r_{\rm sh}/r_*}{N_r}$	2	3.3	5	10
300	206.4	196.0	166.4	149.6
450	230.2	215.0	182.4	160.9

Grid size estimates in published simulations 2

Blondin & Mezzacappa (2006)

Scheck et al. (2008)

Ohnishi et al. (2006)

Burrows et al. (2006)

•This is only an estimate of the possible numerical error. •But of course, this depends on numerical scheme.

Convergence

□ : AUSMDV scheme

•Although the points fluctuate, the deviation **almost linearly** decreases with decrease of Δz .

: HLL scheme

presented S. Fromang. Refer to Londrillo & Del Zanna L 2004

- •The accuracy is **first order** for both numerical schemes.
- •The presence of the shock reduces the accuracy to first order.

Problem 2

P2

Movie (Problem 2 in 2D)

Conclusions

We performed the numerical simulations of the toy model which produces acoustic and advected feed back.

From problem 1

- •The simulation with **small enough grid size** can reproduce the acoustic feed back predicted from the linear theory.
- •We discovered that the acoustic feed back decreases in the non-linear phase.

From problem 2

- •The coarse resolution can overestimate the entropy production by 25%.
- •To reproduce the advective feed back, the grid size of ~1/1000 of the shock distance is needed.
- •The reason is that including the shock reduces the accuracy of the simulation to **first order**.
- •The postshock oscillation produces spurious high frequency oscillations in the advected wave.
- •However, the energy leak involved is 1% or less, and it is small enough and probably doesn't influence g-mode excitation.

Future work

- 1. The toy model can address the question of the horizontal momentum transfer in SASI mechanism.
 - ⇒•the problem of pulsar spin
- 2. We try to perform the simulation of the complete toy model.
 - ⇒•a benchmark test
 - \Rightarrow non-linear phase of the toy model

