Core-Collapse Supernova Explosions Magneto-Rotational Mechanism

Luc Dessart

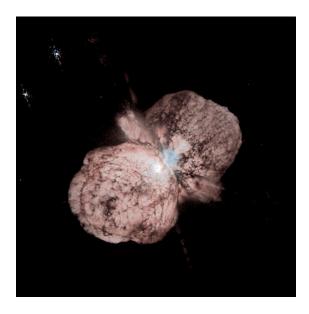
(University of Arizona; Princeton University)

Adam Burrows, Christian Ott, Eli Livne, Jeremiah Murphy, Ivan Hubeny

Mechanisms of Explosion

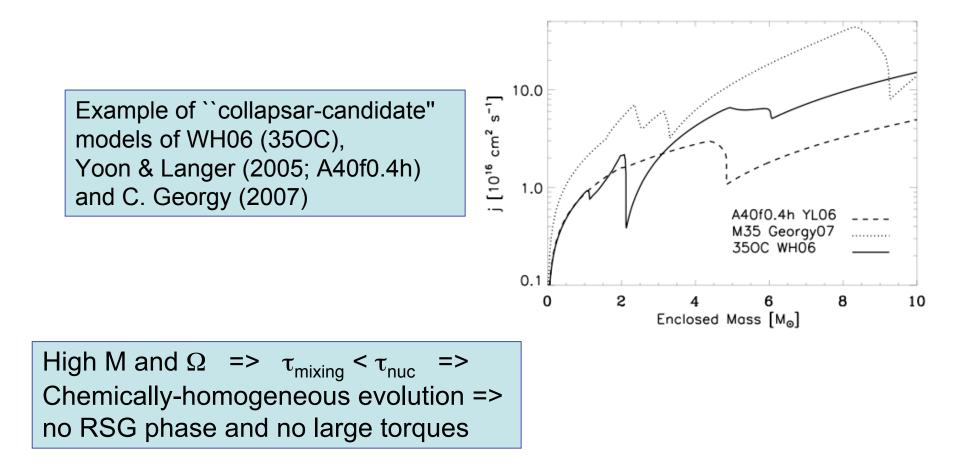
Neutrino:
$$L_{\nu} \sim 10 \,\mathrm{B \, s^{-1}}$$
; $E_{\mathrm{dep}} \sim 0.1 \int_{0}^{\mathrm{few 100 ms}} L_{\nu} dt$
Acoustic: $L_{\mathrm{sound}} \sim 1 \,\mathrm{B \, s^{-1}}$; $E_{\mathrm{dep}} \sim 1 \int_{0}^{\mathrm{1s}} L_{\mathrm{sound}} dt$

Magneto-rotational: E_{rot} tapped through magnetic stresses:


$$E_{\rm rot} \propto 1/r^2$$
during collapse; $E_{\rm rot} \propto \Omega^2$

E_{rot} ~ 10B for a ~2ms-period neutron star!

Do Fast-Rotating Fe or O/Ne/Mg cores exist?


B-fields: Torques tend to establish solid-body rotation and spin down the core during the pre-SN evolution (Spruit)

Mass Loss: Radiation driven winds + rotation: Metallicity (Z) dependence & Rotation Dependence => Polar enhanced mass loss with little angular momentum loss BUT Centrifugally-driven mass loss

$$\dot{M} \propto Z^{0.5-0.8}$$
$$\dot{m} = \dot{M}/4\pi R^2$$
$$\dot{m} \propto F^{1/\alpha} g_{\text{eff}}^{1-1/\alpha}$$
$$g_{\text{eff}} = \frac{GM}{R^2} (1 - \kappa_e F/gc - \Omega^2 \sin^2 \theta)$$
$$\frac{\dot{m}(\theta)}{\dot{m}(0)} = 1 - \Omega^2 \sin^2 \theta$$

Stellar Evolution Models

Stellar evolution models suggest **fast-rotators** are to be found in **Iow-metallicity** environments or may require **binary-evolution** channell (see Woosley/Heger, Yoon/Langer, Maeder/Meynet)

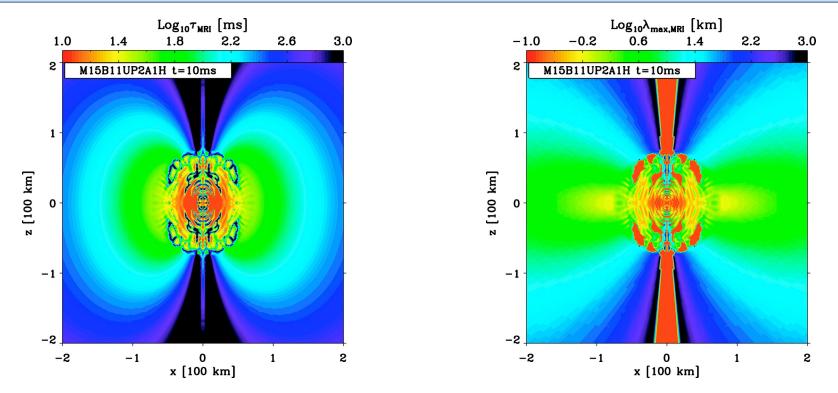
Magnetically-field Amplification

> Flux freezing during collapse: $B/B_0 \propto \left(
ho_{
m nuclear} /
ho_0
ight)^{2/3} \sim 1000$

Winding of the poloidal field

$$\frac{\partial B_{\phi}}{\partial t} \sim B_P\left(\frac{\partial\Omega}{\partial\ln r}\right) \qquad \Delta B_{\phi} \sim B_P\Omega t \sim B_P\left(\frac{2\pi t}{P}\right)$$

Magneto-rotational Instability (MRI; requires differential rotation)


$$au_{mri} \sim 4\pi \left(rac{\partial \ln r}{\partial \Omega}
ight) \sim 2P + \lambda_{mri}^{max} \sim rac{2\pi v_A}{\Omega} \sim v_A P \sim 10^4 \text{ cm } P_{10} rac{B_{12}}{
ho_{11}^{1/2}}$$

Fields at saturation estimated from equipartition with E_{rot}

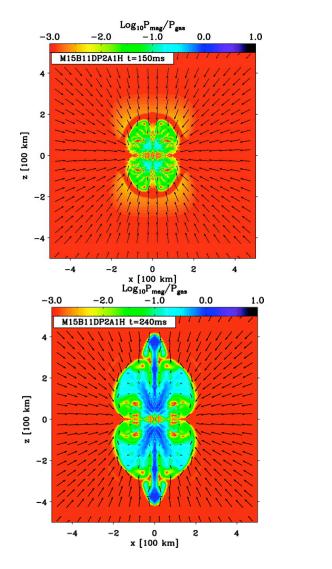
$$B \sim \sqrt{4\pi\varepsilon\rho r^2\Omega^2} \sim 10^{15} \text{ G} \sqrt{\frac{\varepsilon}{0.1}} \sqrt{\rho_{11}r_{30}^2} \left(\frac{\Omega}{10^3 \text{ rad s}^{-1}}\right)$$

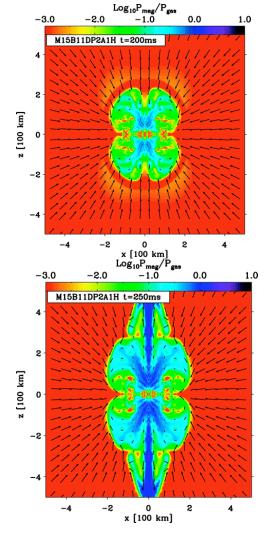
Characteristic MRI time and spatial scales

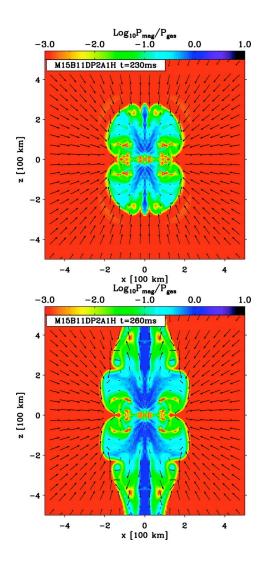
(model taken from Burrows et al. 2007)

Even for such large post-bounce fields, our resolution of <1km is still insufficient

Ansatz: Set initial fields so that by compression and winding alone, we obtain fields at saturation that are comparable to what would obtain were we to resolve the MRI

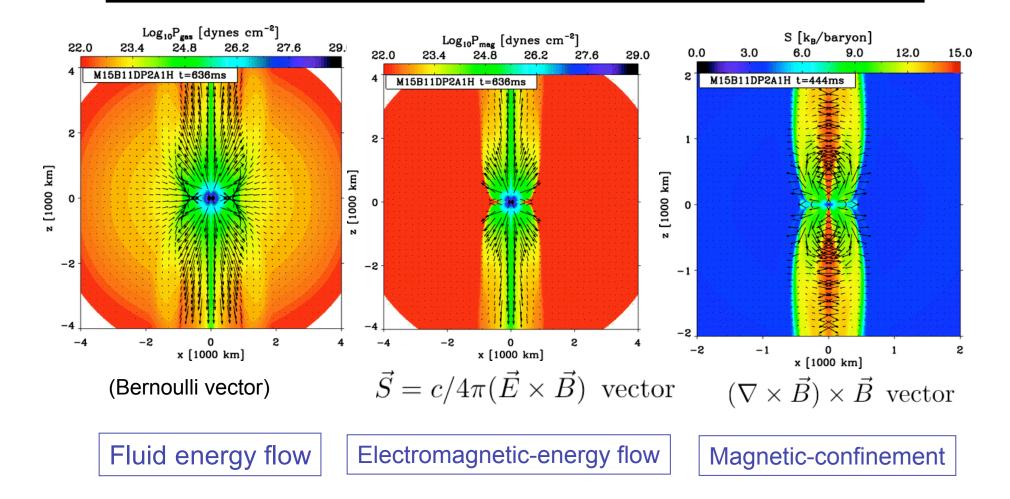

Magnetically-driven Core-Collapse SN Explosions Burrows et al. (2007); Dessart et al. (2007)

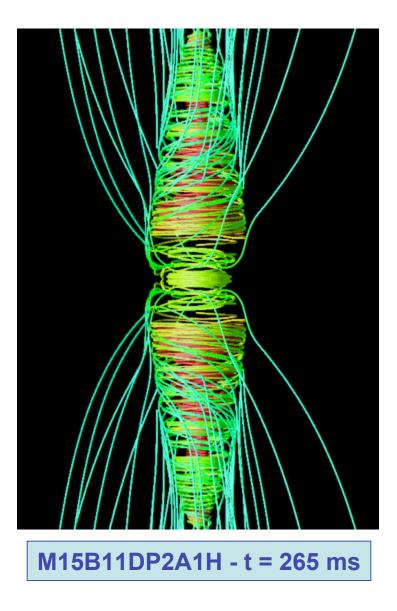

TABLE 1 PROPERTIES OF MODELS												
Name	$_{(M_\odot)}^{\rm Mass}$	B _{poloital} (G)	Field Geometry	P ₀ (s)	A ₀ (km)	Δθ (deg)	t _{explosion} (ms)	t _{end} (ms)	$\stackrel{r_{max}}{(\mathrm{km}\;\mathrm{s}^{-1})}$	$E_{explosion}$ (10 ⁵¹ ergs)	Power (10 ⁵¹ ergs s ⁻¹)	$\langle P \rangle$ (ms)
M15B0DP2A1H	15	0		2	1000	90		595				3.7
M15B10DP2A1H	15	1010	Dipole	2	1000	-90	550	944	37000	0.03	0.155	3.1
M15B10DP2A1F	15	10 ¹⁰	Dipole	2	1000	180	550	685	37000	0.03	0.118	3.1
M15B11DP2A1H	15	1011	Dipole	2	1000	90	250	636	50000	0.2	0.661	6.1
M15B11UP2A1H	15	1011	Uniform	2	1000	90	180	585	55000	2.0	6.832	3.9
M15B11DP4A1H	15	1011	Dipole	4	1000	90	170	415	33000	0.005	0.050	4.2
M15B12DP2A1H	15	1012	Dipole	2	1000	90	80	111	36000	0.6	3,168	25.6

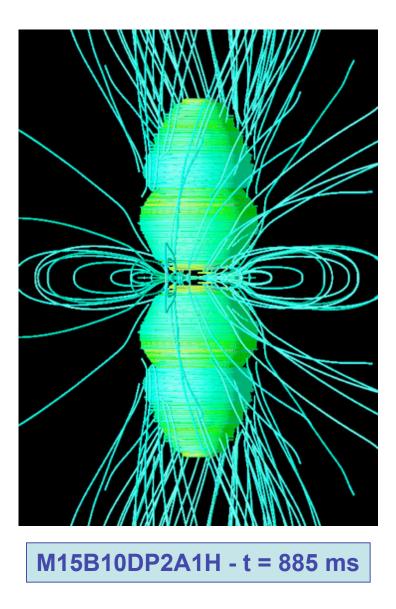

- MHD multi-group flux-limited-diffusion VULCAN/2D simulations
- Input structure: Model m15b6 (Heger et al. 2005)
- Shen EOS
- Neutrino opacities & emissivities (Burrows et al. 2006)
- Field configuration: Dipolar or uniform (B=B_z), strength from 10^{10} to 10^{12} G (initially, B_p>>B_b)
- > Rotation: Ω -cst inside to j-cst outside
- > Coverage: 90° or 180° .

Results from Magnetically-driven Explosions Burrows et al. (2007)

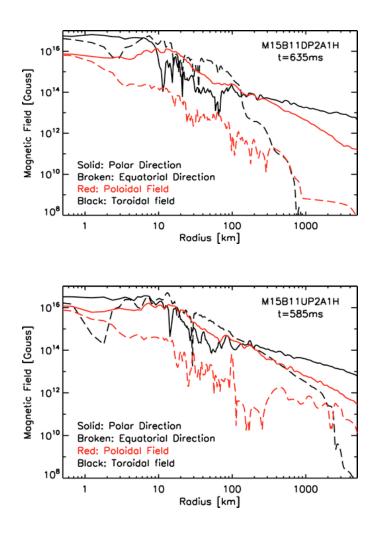
 $P_{mag} << P_{gas}$ inside PNS, but $P_{mag} \sim P_{gas}$ outside of PNS at late times



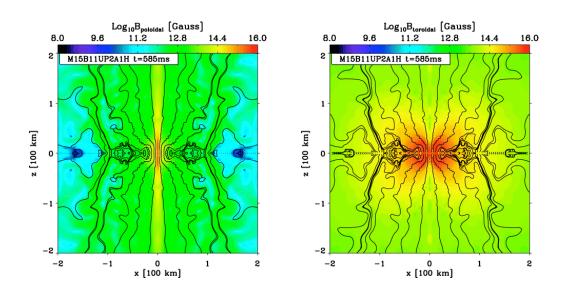


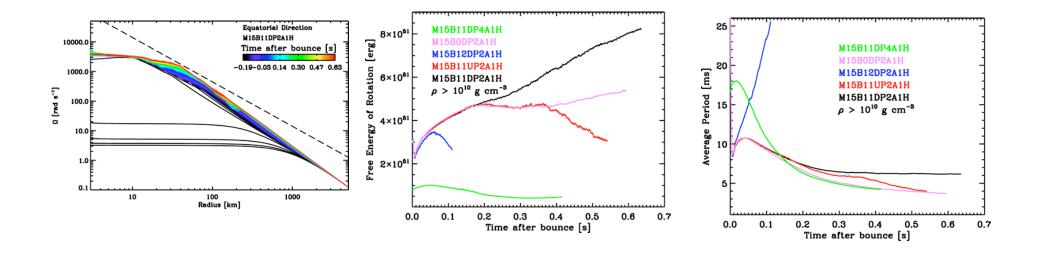

Results from Magnetically-driven Explosions

Burrows et al. (2007)

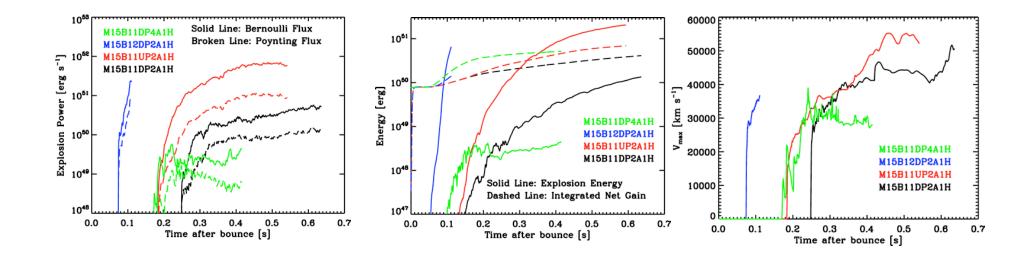


Results from Magnetically-driven Explosions Burrows et al. (2007)




Magnetically-driven Core-Collapse SN Explosions Burrows et al. (2007)

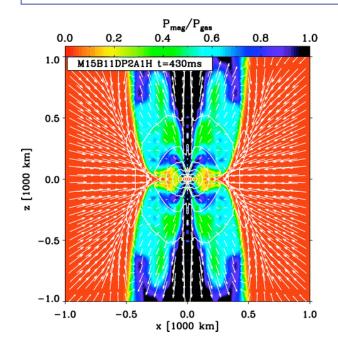
- Magnetar-like field strengths inside PNS
- > B_{tor} > B_{pol} (winding; no MRI)
- B_{pol} increased by advection/stretching of toroidal field lines

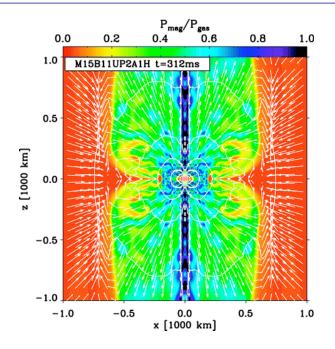


Magnetically-driven Core-Collapse SN Explosions Burrows et al. (2007)

- Solid body rotation inside
- Differential Rotation outside => suitable for growth of MRI
- Large reservoir of free rotation energy
- PNS spin-down

Magnetically-driven Core-Collapse SN Explosions Burrows et al. (2007)

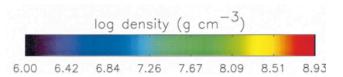


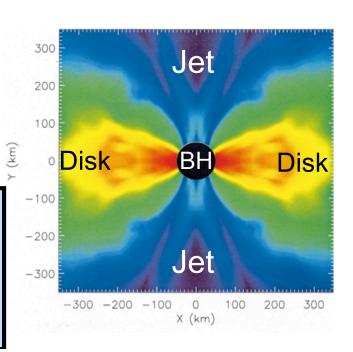

 Sub-dominant contribution from neutrinos compared to Bernouilli and Poynting powers
 Hypernova like explosion energies
 Baryon-loaded non-relativistic ejecta

Results from Magnetically-driven Explosions

Burrows et al. (2007)

- $P_{mag} \sim P_{gas}$ at 30-100km and ~200ms after bounce
- Baryon-loaded Non-relativistic Jet-like Explosions
- Hypernova (~10B) explosion energies
- Rotation is key; Neutrino contribution is secondary
- Extraction of core rotation by magnetic stresses
- Neutron-star spin-down

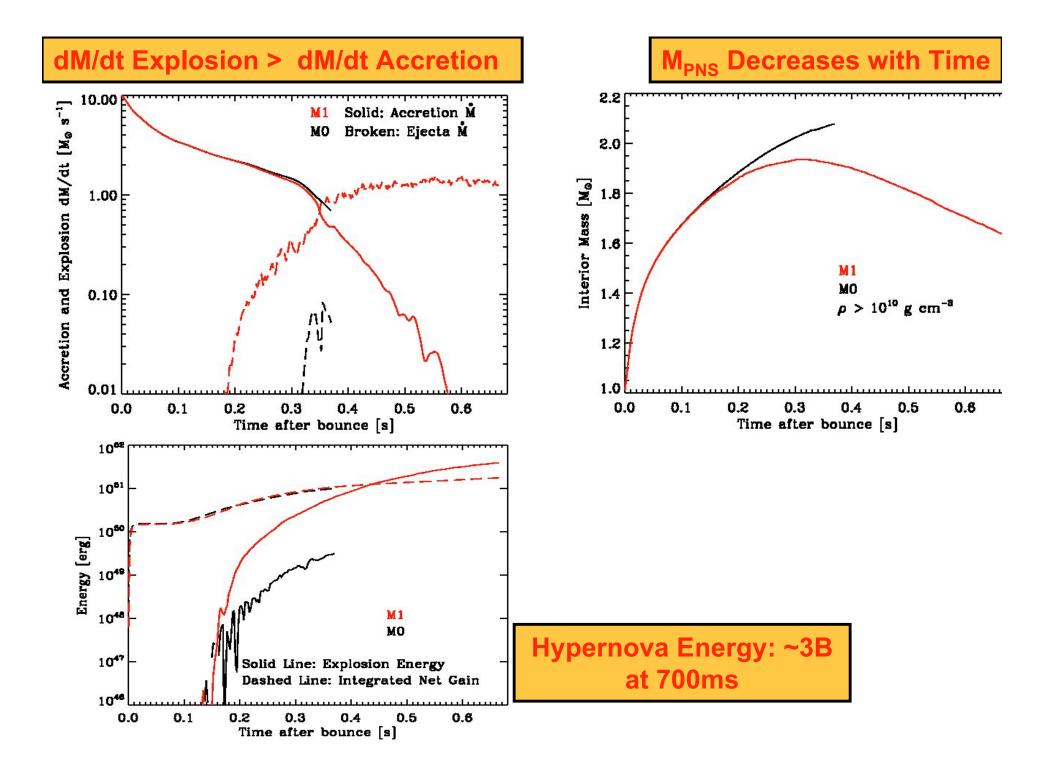

The Collapsar model


Woosley (1993), MacFadyen & Woosley (1999)

Key Role Played by Rotation

- Failed SN forming a 2-3M_{sun} BH from a WR-star progenitor.
- Outcomes function of j₁₆=j/10¹⁶ cm²s⁻¹
- j₁₆ < 3 : Material falls into the BH uninhibited</p>
- j₁₆ > 20 : Material infall halted by centrifugal acceleration
- 3<j₁₆<20: quasi-Keplerian disk forms above the BH.

Relativistic Jet (and GRB)	+ SN Explosion
(~1 B)	(~10 B)
(Baryon-free)	(Baryon-loaded)
(Along the Poles)	(From the Disk)



The Proto-neutron Star Phase of the Collapsar Model and the Route to Long-soft Gamma-ray Bursts and Hypernovae

Dessart et al. (2008)

Simulation of the 35-M_{sun} collapsar-candidate model of Woosley & Heger (2006) using their initial ρ , T, Ω , B_{toroidal}, and B_{poloidal} distributions, but enhancing B_{poloidal} by a factor of 5 to mimick the MRI field amplification

Progenitor: fast-rotating massive mainsequence star evolved chemically homogeneously at low metallicity.

Conclusions

- I. Provided the MRI operates at the surface of the ms-period NS, a magnetically-driven explosion ensues during the PNS phase, in the form of a baryon-loaded non-relativistic jet, and a **BH, central to the collapsar model, does not form**.
- II. Current models of chemically homogeneous evolution at low metallicity yield massive stars with iron cores that may have *too much* angular momentum to avoid a magnetically-driven explosion in the immediate post-bounce phase.
- III. Fast rotation in the iron core may inhibit collapsar formation, which requires a large angular momentum **not in the core but above it.**
- IV. Variations in the angular momentum distribution of massive stars at core collapse might explain both the diversity of Type Ic SNe/HNe and their possible association with a GRB.
- V. Rather than the progenitor mass, the **angular momentum distribution**, through its effect on magnetic field amplification, distinguishes these outcomes.