Identifying the mechanism at work behind SASI

T. Foglizzo, CEA Saclay
T. Yamasaki, J. Sato, J. Guilet (SAp) & MPA

How far do we understand SASI, why bother?

What is an advective-acoustic cycle?

Are there alternative explanations for SASI?

Some evidence for the AAC

Some misleading properties of advective-acoustic cycles (that should not be considered as evidence against AAC)

VOLUME 90, NUMBER 24

PHYSICAL REVIEW LETTERS

week ending 20 JUNE 2003

Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?

R. Buras, M. Rampp, H.-Th. Janka, and K. Kifonidis

Buras et al. 03

Stationary Accretion Shock Instability: SASI

the mechanism of SASI must be fundamentally different from neutrino-driven convection -> an advective-acoustic cycle ? (Blondin et al. 03, Galletti 05, Foglizzo et al. 07)

SASI in numerical simulations: ubiquitous since 2003

		initial setting	symmetry	SASI	v-driven convection	NS g-modes
2003	Blondin et al.	stalled	2D axi.	Х	-	-
2004	Scheck et al.	collapse	2D axi.	Х	Х	-
2006	Scheck et al.	collapse	2D axi.	Х	Х	-
	Burrows et al.	collapse	2D axi.	Х	X	X
	Ohnishi et al.	stalled	2D axi.	Х	Х	-
	Blondin & Mezzacappa	stalled	2D axi.	X	-	-
2007	Blondin & Mezzacappa	stalled	3D	spiral	-	-
	Kotake et al.	stalled	2D axi.	Х	X	-
	Burrows et al.	collapse	2D axi.	Х	X	X
	Blondin & Shaw	stalled	2D eq.	spiral	-	-
	Fryer & Young	collapse	3D	Х	X	?
2008	Scheck et al.	collapse	2D axi.	Х	X	-
-	lwakami et al.	stalled	3D	X	X	-
	Marek & Janka	collapse	2D axi.	Х	Х	weak
	Ott et al.	collapse	2D axi.	Х	Х	?
-	Murphy & Burrows	collapse	2D axi.	Х	X	?

Some unexpected consequences of SASI

-successful explosion mechanism based on neutrino energy deposition, $15 \rm{M}_{\rm{sol}}$ (Marek & Janka 08)

- new explosion mechanism based on acoustic energy, 11-25M_{sol} (Burrows et al. 06, 07, but see also Weinberg & Quataert 08)

- pulsar kicks (Scheck et al. 04, 06)

- pulsar spin (Blondin & Mezzacappa 07, Yamasaki & Foglizzo 08)

- H/He mixing in SN1987A (Kifonidis et al. 06)

How far do we understand SASI, why bother?

What is an advective-acoustic cycle?

Are there alternative explanations for SASI?

Some evidence for the AAC

Some misleading properties of advective-acoustic cycles (that should not be considered as evidence against AAC)

Should we trust the simulations of SASI?

Although SASI is well recognized, different numerical simulations reach different conclusions about

- the explosion threshold: Marek & Janka 08
- the growth of the neutron star g-mode: Burrows et al. 06, 07
- the kick amplitude: Scheck et al. 04, 06
- the spiral mode of SASI even with a non rotating progenitor: Blondin & Mezzacappa 07
- -> numerical methods and physical simplifications have to be compared carefully (e.g. Ott et al. 08)
- -> Validation of the simulations of SASI in the linear regime (Blondin & Mezzacappa 06, Foglizzo et al. 07)

Do we understand SASI?

Proposed instability mechanisms: neutrino driven convection acoustic instability advective-acoustic cycle

- SASI does not require negative entropy gradients, and can be disentangled from convection in the linear regime (Foglizzo et al. 06, Yamasaki & Yamada 07)
- what is the physical explanation supporting a purely acoustic instability ???
- what is the advective-acoustic cycle ? (Foglizzo & Tagger 00, Foglizzo 01, 02)

Beyond the comparison of timescales and eigenfrequencies, a WKB approach can fully characterize the instability of higher harmonics

How far do we understand SASI, why bother?

What is an advective-acoustic cycle?

Are there alternative explanations for SASI?

Some evidence for the AAC

Some misleading properties of advective-acoustic cycles (that should not be considered as evidence against AAC)

Aero-acoustic instabilities

- advected perturbations
- acoustic feedback

rumble instability of ramjets

Abouseif, Keklak & Toong (1984)

Advective-acoustic coupling: 2 types of acoustic feedback

Advective-acoustic coupling: analytic description

$$\left\{ \frac{\partial^2}{\partial r^2} + a_1 \frac{\partial}{\partial r} + a_0 \right\} \frac{\delta p}{p} = \frac{b_0}{1 - M^2} \delta S_R e^{i\omega \int_R^r \frac{dr}{v}}$$

Equation of acoustic waves

$$\delta K = r^2 v \cdot (\nabla \times \delta w) + l(l+1)c^2 \frac{\delta S}{\gamma} = 0$$

$$b_0 \approx \frac{i\omega}{v} \frac{\partial \log c^2}{\partial r} \qquad \frac{\omega r}{v} >> 1$$

$$b_0 \approx \frac{\Delta}{vc^2} \frac{\partial}{\partial r} \left[\frac{c^2}{\Delta} \left(v \frac{\partial \log M^2}{\partial r} - i\omega \right) \right]$$

$$b_0 \approx -\frac{\partial \log c^2}{\partial r} \frac{\partial \log M^2}{\partial r} \qquad \frac{\omega r}{v} << 1, \quad l = 0 \quad \text{entropic-acoustic}$$

$$\Delta = \omega^2 + 2i\omega \frac{\partial v}{\partial r} + l(l+1) \frac{v^2}{r^2}$$

$$b_0 \approx \frac{\partial \log M^2}{\partial r} \frac{\partial \log M}{\partial r} \left(\frac{v}{rc^2} \right) \quad \frac{\omega r}{v} << 1, \quad l \geq 1 \quad \text{vortical-acoustic}$$

The simplest example of a 2D advective-acoustic cycle

-> see the movies by J. Sato (2008)

How far do we understand SASI, why bother?

What is an advective-acoustic cycle?

Are there alternative explanations for SASI?

Some evidence for the AAC

Some misleading properties of advective-acoustic cycles (that should not be considered as evidence against AAC)

SASI as a purely acoustic cycle?

Blondin & Mezzacappa 06

Fig. 6.—Example of a round-trip path (dashed line) for which the acoustic travel time is $\tau = 2\pi/\omega_0 = 10.5$ for the T^4 model with $R_s/r_s = 5$. The outer circle masks the spherical accretion shock, and the inner circle is the surface of the accreting star with a midius of $r_s = 0.2$.

Nobuta & Hanawa 1994

Laming 07: frequency domain of validity?

How far do we understand SASI, why bother?

What is an advective-acoustic cycle?

Are there alternative explanations for SASI?

Some evidence for the AAC

Some misleading properties of advective-acoustic cycles (that should not be considered as evidence against AAC)

Advective-acoustic cycle in a decelerated, cooled flow

Foglizzo et al. 2007

Unstable advective-acoustic cycle, Stable acoustic cycle

Advective-acoustic cycle in a simplified core-collapse simulation Scheck et al. 08

Evidence for the advective-acoustic cycle in a cylindrical flow

How far do we understand SASI, why bother?

What is an advective-acoustic cycle?

Are there alternative explanations for SASI?

Some evidence for the AAC

Some misleading properties of advective-acoustic cycles (that should not be considered as evidence against AAC)

Some misleading properties of the AAC

« effective coupling radius »: the acoustic feedback is not necessarily localized radially

Some misleading properties of the AAC

The acoustic feedback does not necessarily propagate radially: it can be evanescent and propagate horizontally

The acoustic cycle alone is always stable (R<1), but can help destabilize the advective-acoustic cycle (Q + R > 1)

Conclusions

The mechanism responsible for SASI is the advective-acoustic cycle (neither purely acoustic, nor purely convective)

The strict proof is limited to higher harmonics

Why bother?

- interpret the outcome of numerical simulations
- importance of the lower boundary condition: spurious vs physical feedback?
- first step towards understanding the effect of rotation and magnetic fields on SASI
- challenge our understanding by comparing SASI with other advective-acoustic instabilities

Diversity of advective-acoustic cycles

Ariane 5

kettle

supersonic black hole

cellular detonation

asymmetric supernova

Classification of advective-acoustic cycles

