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Motivation

 i) Astrophysical motivation

● Large class of astrophysical problems involve 
collisional systems where the mean free path is 
much smaller than all length scales of interest

● Simplest case: single, ideal, non-magnetic fluid
● Next step: include magnetic fields

Can adopt a fluid description of matter
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The MHD equations

Mass

Momentum

Energy

Magnetic flux

No monopoles

EoS:

 ii) Solving the MHD equations
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The MHD equations (2)

Mass

Momentum

Energy

Magnetic flux

No monopoles

EoS:

 ii) Solving the MHD equations
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Solution Algorithm: An Overview
● Algorithm from Pen et al. 2003, Liebendörfer et al. 

2005
● Uses operator splitting:

– Dimensional splitting: solves eqs in 1D 

– Split hydro and magnetic variables update
● Uses 2nd order TVD finite volume method for 

hydrodynamic and magnetic variables
● Uses constrained transport for 
● Correct operator ordering gives 2nd order accuracy 

in time

 ii) Solving the MHD equations
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Notation

Conserved variables:

Fluxes: analog

 ii) Solving the MHD equations
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Notation (2)

Conserved variables:

Fluxes: analog

 ii) Solving the MHD equations
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Finite Volume Methods Basics

● Use integral form of eqs

 ii) Solving the MHD equations
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Finite Volume Methods Basics (2)

● Use integral form of eqs

Quantity in volume     changes by fluxes
through the boundary

 ii) Solving the MHD equations
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Finite Volume Methods Basics (3)

● Integral form suggests to discretize time into 
discrete steps      and space into finite volumes 
or cells 

 ii) Solving the MHD equations

Conservative!!!
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Finite Volume Methods Basics (4)

● Integral form suggests to discretize time into 
discrete steps      and space into finite volumes 
or cells 

Cell volume

Cell average of 

Cell spacings

Cell indexing

Numerical fluxes
time average flux per unit area at boundary surface

 ii) Solving the MHD equations
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Finite Volume Methods Basics (5)

● Use operator splitting

Dimensional splitting:

 ii) Solving the MHD equations
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Magnetic field advection

● Operator splitting: solve alternatively for fluid 
and magnetic variables

● Magnetic field advected with constant velocity 
field from fluid update

● Additional numerical difficulty:

● Magnetic field update also dimensionally split

Discuss only constrained transport... other methods projection method, 8-wave formulation
See Tòth 2000

 iii) Keeping
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Constrained transport

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: consider integral form of flux conservation 

equation

Temporal change in magnetic flux equals minus the total EMF
around contour of the surface (fixed in space)

 iii) Keeping
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Constrained transport (2)

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: consider integral form of flux conservation 

equation

Temporal change in magnetic flux equals minus the total EMF
around contour of the surface

Suggests following discretization:

 iii) Keeping
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Constrained transport (3)

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: use staggered mesh

– Average density & energy density placed on cell 
centers

– Magnetic field & velocity components placed on 
faces center

For 3D computational cell

●Place magnetic field on cell faces
 (So-called staggered mesh)

●Compute EMF on cell edges
 (requires velocity to be interpolated)

●For cell                  equivalent to

 iii) Keeping
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Constrained transport (4)

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: use staggered mesh

– Average density & energy density placed on cell 
centers

– Magnetic field & velocity components placed on 
faces center

For 3D computational cell

●Place magnetic field on cell faces
 (So-called staggered mesh)

●Compute EMF on cell edges
 (requires velocity to be interpolated)

●For cell                  equivalent to

Each EMF contribution appears
twice with opposite sign!!!

 iii) Keeping
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Constrained transport (5)

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: consider integral form of flux conservation 

equation

Temporal change in magnetic flux equals minus the total EMF
around contour of the surface

●Magnetic field equation dimensionally split
●Update by using 2D advection-constraint steps
●Example:      along x-direction

Transport terms along x
Use TVD scheme

 iii) Keeping
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Constrained transport (6)

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: consider integral form of flux conservation 

equation

Temporal change in magnetic flux equals minus the total EMF
around contour of the surface

●Magnetic field equation dimensionally split
●Update by using 2D advection-constraint steps
●Example:      along x-direction

Transport terms along x
Use TVD scheme

Constraint terms along x
Use same flux as for

Constraint for

 iii) Keeping
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Constrained transport (7)

● Evans & Hawley 1988
● First discuss algorithm in general
● Idea: consider integral form of flux conservation 

equation

Temporal change in magnetic flux equals minus the total EMF
around contour of the surface

●Magnetic field equation dimensionally split
●Update by using 2D advection-constraint steps
●Example:      along x-direction

Transport terms along x
Use TVD scheme

Constraint terms along x
Use same flux as for

 iii) Keeping
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Connecting fluid and magnetic 
update

● Operator splitting used
● Ordering of operators gives 2nd order accuracy 

in time

Forward sweep

Backward sweep

 iii) Keeping
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Incorporating gravity

● Fundamental ingredient for astrophysical 
simulations

● Use operator splitting

Simple

 iv) Including gravity
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Incorporating gravity (2)

● Fundamental ingredient for astrophysical 
simulations

● Use operator splitting

Simple

Difficulties:

1) EoS is called with as input the internal energy

  The internal energy is computed by subtracting the
  kinetic and magnetic energies from total energy

  This may lead to negative internal energies and make
  the code crash! 

Weak coupling of gravity to MHD

 iv) Including gravity
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Incorporating gravity (3)

● Fundamental ingredient for astrophysical 
simulations

● Use operator splitting

Simple

Difficulties:

2) Consider a steady flow:

  Both fluxes and source term may be large expression

  Very unlikely that potentially large changes in
  cancel by the splitting:

  Even if cancellation exact, what about small perturbations
  in steady flow?

Weak coupling of gravity to MHD

 iv) Including gravity
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Incorporating gravity (4)

● Improve coupling by
– Directionally splitting

– Include half of the gravity before and after a fluid 
update

 iv) Including gravity
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Incorporating gravity (5)

● Further problem:
– The gradients induced in       by gravitation may be 

wrongly interpreted as part of a propagating wave 
during the fluid update (flux limiters!)

 iv) Including gravity

Subtract hydrostatic equilibrium gradients
in flux construction

Zingale et al. 2002, similar but only PPM
Assuming

Sound speed
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Adapting the mesh

 v) Adapting the mesh

● Motivation
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Adapting the mesh (2)

 v) Adapting the mesh

● Simplest approach
– Use non-equidistant Cartesian mesh

● Better:
– Adaptive Mesh Refinement (AMR)
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Adapting the mesh (3)

 v) Adapting the mesh

● Simplest approach
– Use non-equidistant Cartesian mesh
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Adapting the mesh (4)

 v) Adapting the mesh

● Testing
– Sedov-Taylor blast wave (point explosion)

– Magnetic explosion

– Braking of a magnetic rotor

● Comparison between uniform and non-uniform 
meshes
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Adapting the mesh (5)

 v) Adapting the mesh

● Sedov-Taylor blast wave (point explosion)

Uniform mesh Gaussian mesh

Pressure
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Adapting the mesh (6)

 v) Adapting the mesh

● Sedov-Taylor blast wave (point explosion)
– Comparison to analytic solution

Uniform mesh Gaussian mesh
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Adapting the mesh (7)

 v) Adapting the mesh

● Magnetic explosion (Sedov-Taylor + Magnetic field)
Abs. Magnitude of velocity

Uniform mesh Two mesh
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Adapting the mesh (8)

 v) Adapting the mesh

● Braking of a magnetic rotor (Balsara & Spicer 1999)

– Dense, rapidly spinning cylinder (the rotor) in a light 
ambient fluid

– Domain threaded by an initially uniform magnetic 
field

– Rapidly spinning rotor causes torsional Alfvén 
waves to be launched (angular momentum lost)

– Model for angular momentum loss of collapsing gas 
clouds in star formation
(Mouschovias & Paleologou 1980)
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Adapting the mesh (9)

 v) Adapting the mesh

● Braking of a magnetic rotor (Balsara & Spicer 1999)
Abs. Magnitude of velocity

Uniform mesh Exponential mesh
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Parallelization

● Using Message Passing Interface (MPI)
● Cubic domain decomposition (chosen to min comm.)

● Use of non-blocking communication to overlap 
communication with computation

Ghost zones (boundaries)

#CPU

Buffer cells
(copies from
neighboring cells)

 vi) Parallelization
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Parallelization (2)

● Using Message Passing Interface (MPI)
● Cubic domain decomposition
● Use of non-blocking communication to overlap 

communication with computation

Parallel Performance

Test case: 600x600x600 zones for 40 time steps

From S. Scheidegger

Test performed @ Swiss Super Computing Center CSCS

 vi) Parallelization
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Summary

● Presented (partly) the MHD algorithm of our 
code

● Gravity incorporation into MHD code
● Improving the resolution by “adapting” the mesh
● Parallelization
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