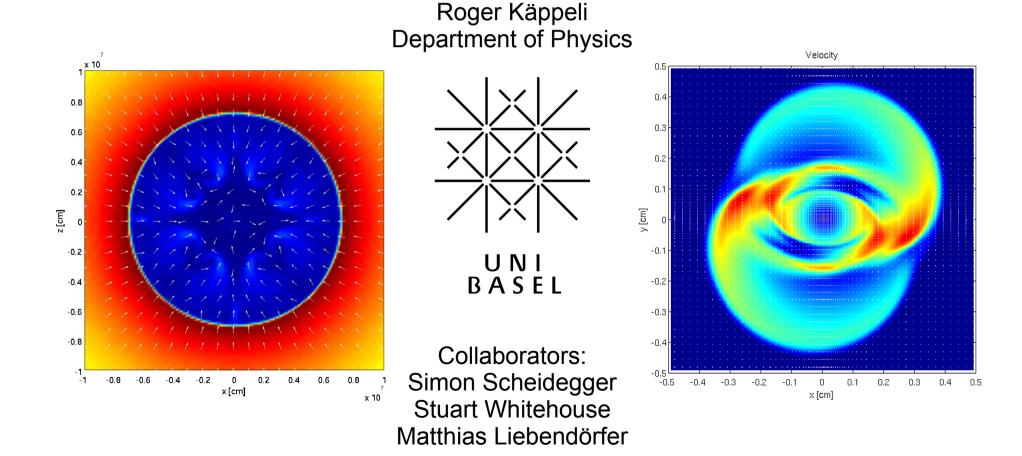
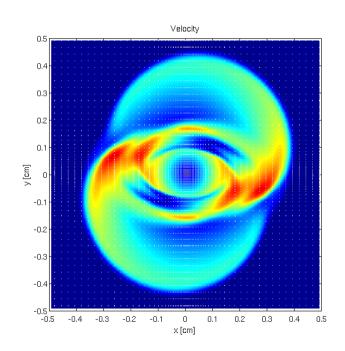
A Parallel 3D MHD code for core collapse supernova



Outline

Numerical Algorithms

i) Astrophysical motivation ii) Solving the MHD equations iii) Keeping $\nabla \cdot \boldsymbol{b} = 0$ iv) Including gravity v) Adapting the mesh vi) Parallelization



Motivation

 Large class of astrophysical problems involve collisional systems where the mean free path is much smaller than all length scales of interest

\implies Can adopt a fluid description of matter

- Simplest case: single, ideal, non-magnetic fluid
- Next step: include magnetic fields

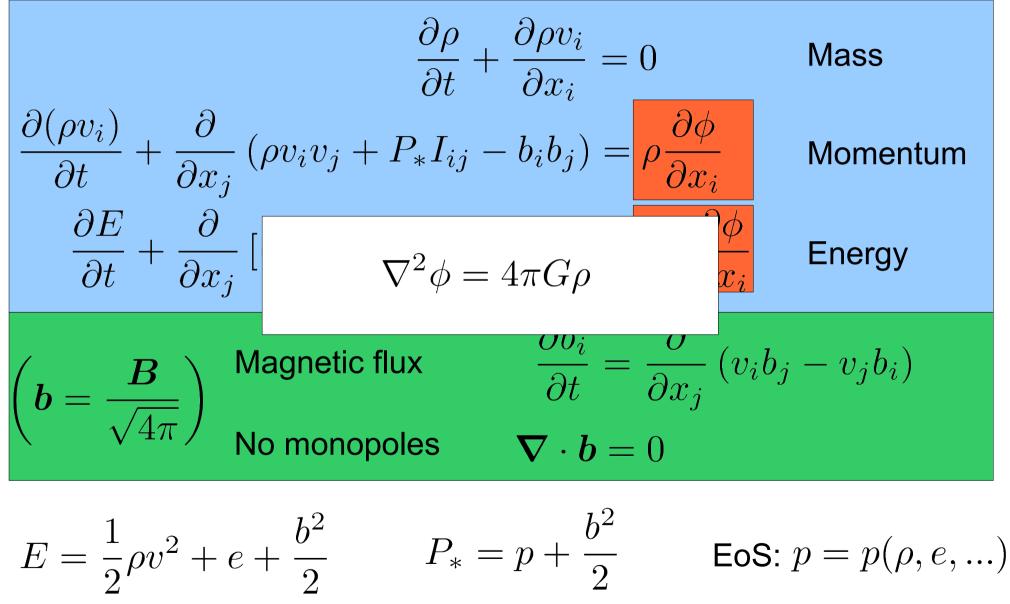
The MHD equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \rho v_i}{\partial x_i} &= 0 & \text{Mass} \\ \frac{\partial (\rho v_i)}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho v_i v_j + P_* I_{ij} - b_i b_j \right) &= \rho \frac{\partial \phi}{\partial x_i} & \text{Momentum} \\ \frac{\partial E}{\partial t} + \frac{\partial}{\partial x_j} \left[(E + P_*) v_j - v_i b_i b_j \right] &= \rho v_i \frac{\partial \phi}{\partial x_i} & \text{Energy} \\ \\ \begin{pmatrix} b &= \frac{B}{\sqrt{4\pi}} \end{pmatrix} & \text{Magnetic flux} & \frac{\partial b_i}{\partial t} &= \frac{\partial}{\partial x_j} \left(v_i b_j - v_j b_i \right) \\ \text{No monopoles} & \nabla \cdot b &= 0 \end{aligned}$$
$$\begin{aligned} E &= \frac{1}{2} \rho v^2 + e + \frac{b^2}{2} & P_* &= p + \frac{b^2}{2} & \text{EoS: } p = p(\rho, e, ...) \end{aligned}$$

02.07.08

Roger Käppeli, IHP2008

The MHD equations (2)



02.07.08

Roger Käppeli, IHP2008

Solution Algorithm: An Overview

- Algorithm from Pen et al. 2003, Liebendörfer et al. 2005
- Uses operator splitting:
 - Dimensional splitting: solves eqs in 1D
 - Split hydro and magnetic variables update
- Uses 2nd order TVD finite volume method for hydrodynamic and magnetic variables
- Uses constrained transport for $\nabla \cdot \boldsymbol{b} = 0$
- Correct operator ordering gives 2nd order accuracy in time

Notation

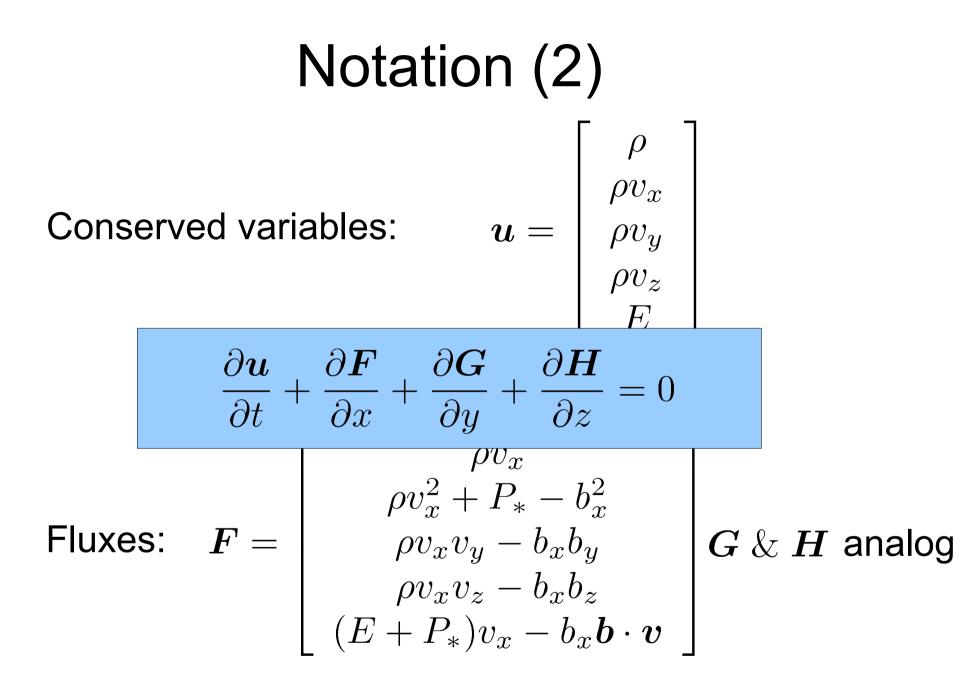
Conserved variables:

$$\boldsymbol{u} = \begin{bmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho v_z \\ E \end{bmatrix}$$

Fluxes:
$$\boldsymbol{F} = \begin{bmatrix} \rho v_x \\ \rho v_x^2 + P_* - b_x^2 \\ \rho v_x v_y - b_x b_y \\ \rho v_x v_z - b_x b_z \\ (E + P_*) v_x - b_x \boldsymbol{b} \cdot \boldsymbol{v} \end{bmatrix} \boldsymbol{G} \& \boldsymbol{H} \text{ analog}$$

02.07.08

Roger Käppeli, IHP2008



02.07.08

Roger Käppeli, IHP2008

Finite Volume Methods Basics

• Use integral form of eqs

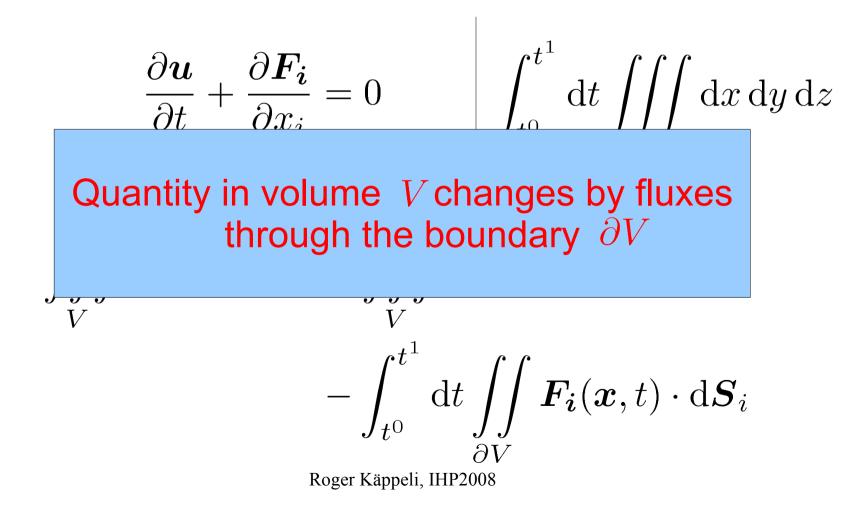
$$\frac{\partial \boldsymbol{u}}{\partial t} + \frac{\partial \boldsymbol{F_i}}{\partial x_i} = 0 \qquad \qquad \int_{t^0}^{t^1} \mathrm{d}t \iiint_V \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z$$

$$\iiint_{V} \boldsymbol{u}(\boldsymbol{x}, t^{1}) dV = \iiint_{V} \boldsymbol{u}(\boldsymbol{x}, t^{0}) dV$$
$$- \int_{t^{0}}^{t^{1}} dt \iiint_{\partial V} \boldsymbol{F}_{i}(\boldsymbol{x}, t) \cdot d\boldsymbol{S}_{i}$$

Roger Käppeli, IHP2008

Finite Volume Methods Basics (2)

Use integral form of eqs



Finite Volume Methods Basics (3)

• Integral form suggests to discretize time into discrete steps Δt and space into finite volumes or cells

$$\begin{split} \boldsymbol{u}_{i,j,k}^{n+1} &= \boldsymbol{u}_{i,j,k}^n - \frac{\Delta t}{\Delta x} \left(\boldsymbol{F}_{i+1/2,j,k}^n - \boldsymbol{F}_{i-1/2,j,k}^n \right) \\ &- \frac{\Delta t}{\Delta y} \left(\boldsymbol{G}_{i,j+1/2,k}^n - \boldsymbol{G}_{i,j-1/2,k}^n \right) \\ &- \frac{\Delta t}{\Delta z} \left(\boldsymbol{H}_{i,j,k+1/2}^n - \boldsymbol{H}_{i,j,k-1/2}^n \right) \end{split}$$

Finite Volume Methods Basics (4)

Integral form suggests to discretize time into

i, j, kCell indexing **Cell spacings** $\Delta x = x_{i+1/2} - x_{i-1/2} = \text{const.}$ $\Delta y = y_{j+1/2} - y_{j-1/2} = \text{const.}$ $\Delta z = z_{k+1/2} - z_{k-1/2} = \text{const.}$ $V = \Delta x \Delta y \Delta z$ Cell volume $\begin{array}{ll} \text{Numerical fluxes} \quad \pmb{F}_{i+1/2,j,k}^n = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \pmb{F}(\pmb{u}(x_{i+1/2},t)) \mathrm{d}t \\ \text{time average flux per unit area at boundary surface} \end{array}$ $\boldsymbol{u}_{i,j,k}^n = \frac{1}{V} \int_{V} \boldsymbol{u}(\boldsymbol{x},t) \mathrm{d}V$ Cell average of u

Finite Volume Methods Basics (5)

Use operator splitting

Dimensional splitting: $L_{x}: \quad \boldsymbol{u}_{i,j,k}^{n+1/3} = \quad \boldsymbol{u}_{i,j,k}^{n} - \frac{\Delta t}{\Delta x} \left(\boldsymbol{F}_{i+1/2,j,k}^{n} - \boldsymbol{F}_{i-1/2,j,k}^{n} \right)$ $L_{y}: \quad \boldsymbol{u}_{i,j,k}^{n+2/3} = \quad \boldsymbol{u}_{i,j,k}^{n+1/3} - \frac{\Delta t}{\Delta y} \left(\boldsymbol{G}_{i,j+1/2,k}^{n+1/3} - \boldsymbol{G}_{i,j-1/2,k}^{n+1/3} \right)$ $L_{z}: \quad \boldsymbol{u}_{i,j,k}^{n+1} = \quad \boldsymbol{u}_{i,j,k}^{n+2/3} - \frac{\Delta t}{\Delta z} \left(\boldsymbol{H}_{i,j,k+1/2}^{n+2/3} - \boldsymbol{H}_{i,j,k-1/2}^{n+2/3} \right)$

Roger Käppeli, IHP2008

Magnetic field advection

- Operator splitting: solve alternatively for fluid and magnetic variables
- Magnetic field advected with constant velocity field from fluid update
- Additional numerical difficulty:

 $\boldsymbol{\nabla}\cdot\boldsymbol{b}=0$

Discuss only constrained transport... other methods projection method, 8-wave formulation See Toth 2000

• Magnetic field update also dimensionally split

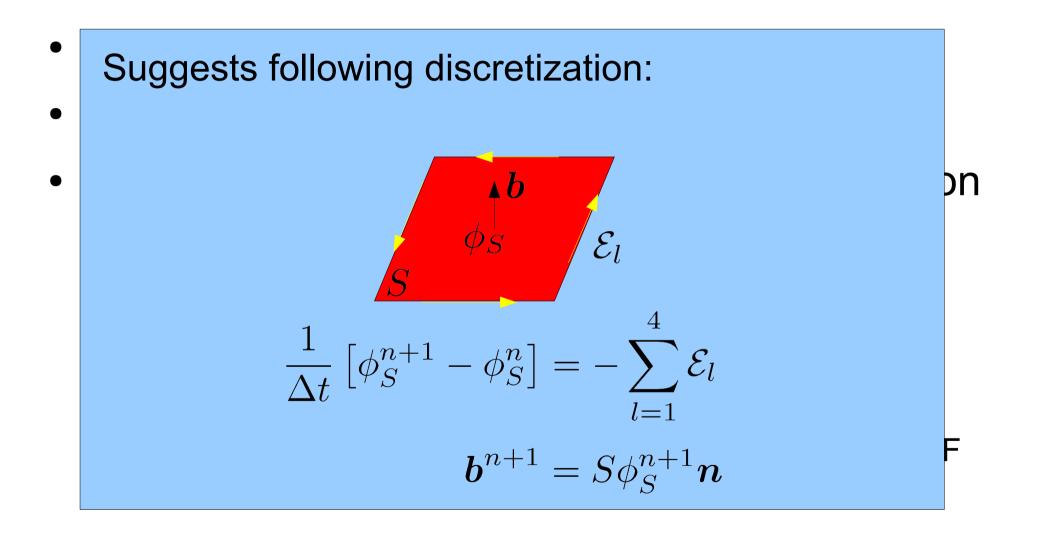
Constrained transport

- Evans & Hawley 1988
- First discuss algorithm in general
- Idea: consider integral form of flux conservation equation

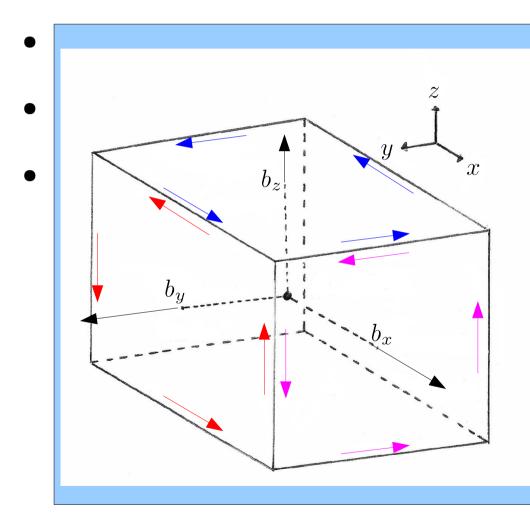
$$\frac{\partial}{\partial t}\phi(t) = \frac{\partial}{\partial t}\int_{S} b_{i} \mathrm{d}S_{i} = -\mathcal{E} = -\oint_{\partial S} \epsilon_{ijk}v_{j}b_{k}\mathrm{d}x_{i}$$

Temporal change in magnetic flux equals minus the total EMF around contour of the surface (fixed in space)

Constrained transport (2)



Constrained transport (3)



For 3D computational cell

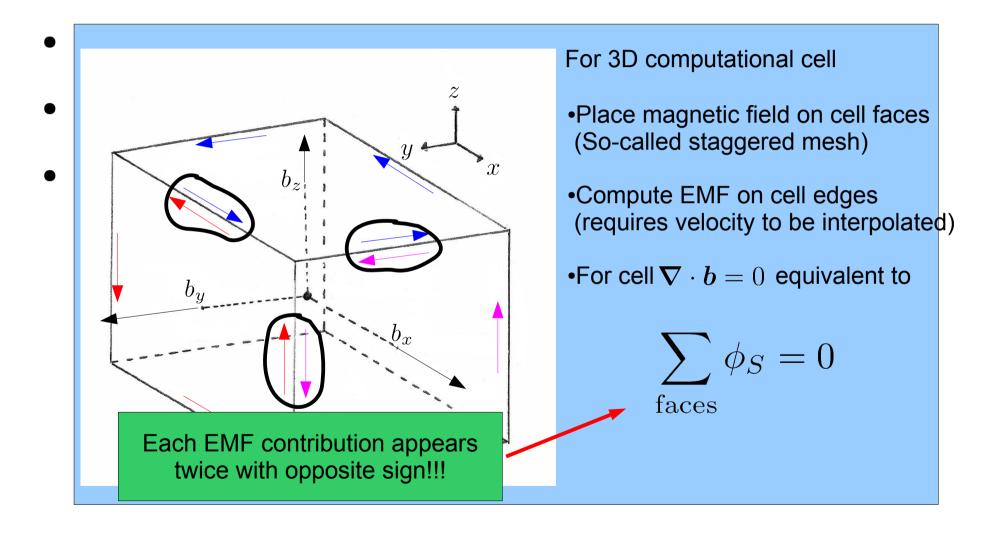
•Place magnetic field on cell faces (So-called staggered mesh)

•Compute EMF on cell edges (requires velocity to be interpolated)

•For cell $\boldsymbol{\nabla}\cdot\boldsymbol{b}=0$ equivalent to

$$\sum_{\text{faces}} \phi_S = 0$$

Constrained transport (4)



Constrained transport (5)

Magnetic field equation dimensionally split
 Update by using 2D advection-constraint steps

• •Example: b_y along x-direction

$$\begin{array}{ll} (b_x)_{i+1/2,j,k}^{n+1/3} = (b_x)_{i+1/2,j,k}^n + & \frac{\Delta t}{\Delta y \Delta z} \left\{ +\Delta y \left[\overline{v_z} \overline{b_x} - \overline{v_x} \overline{b_z} \right]_{i+1/2,k+1/2} \\ & - & \Delta y \left[\overline{v_z} \overline{b_x} - \overline{v_x} \overline{b_z} \right]_{i+1/2,k-1/2} \\ & - & \Delta z \left[\overline{v_x} \overline{b_y} - \overline{v_y} \overline{b_x} \right]_{i+1/2,j+1/2} \\ & + & \Delta z \left[\overline{v_x} \overline{b_y} - \overline{v_y} \overline{b_x} \right]_{i+1/2,j-1/2} \right\} \\ (b_y)_{i,j+1/2,k}^{n+1/3} = (b_y)_{i,j+1/2,k}^n + & \frac{\Delta t}{\Delta x \Delta z} \left\{ -\Delta x \left[\overline{v_y} \overline{b_z} - \overline{v_z} \overline{b_y} \right]_{j+1/2,k+1/2} \\ & + & \Delta x \left[\overline{v_y} \overline{b_z} - \overline{v_z} \overline{b_y} \right]_{j+1/2,k-1/2} \\ & + & \Delta x \left[\overline{v_y} \overline{b_z} - \overline{v_z} \overline{b_y} \right]_{i+1/2,k-1/2} \\ & + & \Delta x \left[\overline{v_x} \overline{b_y} - \overline{v_y} \overline{b_x} \right]_{i+1/2,j+1/2} \\ & + & \Delta z \left[\overline{v_x} \overline{b_y} - \overline{v_y} \overline{b_x} \right]_{i+1/2,j+1/2} \\ & + & \Delta z \left[\overline{v_x} \overline{b_y} - \overline{v_y} \overline{b_x} \right]_{i+1/2,j+1/2} \end{array} \right\}$$

DN

Constrained transport (6)

Magnetic field equation dimensionally split
 Update by using 2D advection-constraint steps

• •Example: b_y along x-direction

$$(b_x)_{i+1/2,j,k}^{n+1/3} = (b_x)_{i+1/2,j,k}^n + \frac{\Delta t}{\Delta y \Delta z} \left\{ +\Delta y \left[\overline{v_z b_x} - \overline{v_x b_z} \right]_{i+1/2,k+1/2} \right]$$

$$= \Delta y \left[\overline{v_z b_x} - \overline{v_x b_z} \right]_{i+1/2,k-1/2} + \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2} + \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2} \right\}$$

$$= (b_y)_{i,j+1/2,k}^{n+1/3} = (b_y)_{i,j+1/2,k}^n + \frac{\Delta t}{\Delta x \Delta z} \left\{ -\Delta x \left[\overline{v_y b_z} - \overline{v_z b_y} \right]_{j+1/2,k+1/2} + \Delta x \left[\overline{v_y b_z} - \overline{v_z b_y} \right]_{j+1/2,k-1/2} \right\}$$

$$= \Delta z \left[\overline{v_x b_y} + \overline{v_y b_x} \right]_{i+1/2,j+1/2} + \Delta z \left[\overline{v_x b_y} + \overline{v_y b_x} \right]_{i+1/2,j+1/2} + \Delta z \left[\overline{v_x b_y} + \overline{v_y b_x} \right]_{i+1/2,j+1/2} + \Delta z \left[\overline{v_x b_y} + \overline{v_y b_x} \right]_{i+1/2,j+1/2} \right]$$

$$= \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2} + \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2} + \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2} \right]$$

$$= \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2}$$

$$= \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2} \right]$$

$$= \Delta z \left[\overline{v_x b_y} - \overline{v_y b_x} \right]_{i+1/2,j+1/2}$$

Constrained transport (7)

Magnetic field equation dimensionally split

Update by using 2D advect

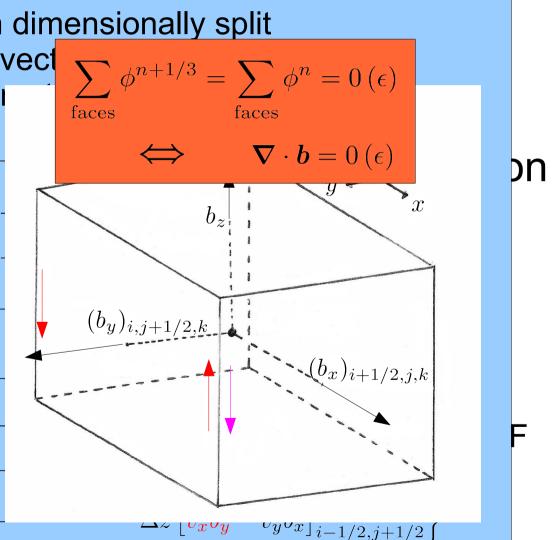
•Example: b_y along x-di

$$(b_x)_{i+1/2,j,k}^{n+1/3} = (b_x)_{i+1/2,j,k}^n$$

Constraint terms along x Use same flux as for b_y

$$(b_y)_{i,j+1/2,k}^{n+1/3} = (b_y)_{i,j+1/2,k}^n$$

Transport terms along x Use TVD scheme



Roger Käppeli, IHP2008

Connecting fluid and magnetic update

- Operator splitting used
- Ordering of operators gives 2nd order accuracy in time

Forward sweep

$$L_x^{HD}L_x^bL_y^{HD}L_y^bL_z^{HD}L_z^b\boldsymbol{u}^n = \boldsymbol{u}^{n+1}$$

Backward sweep

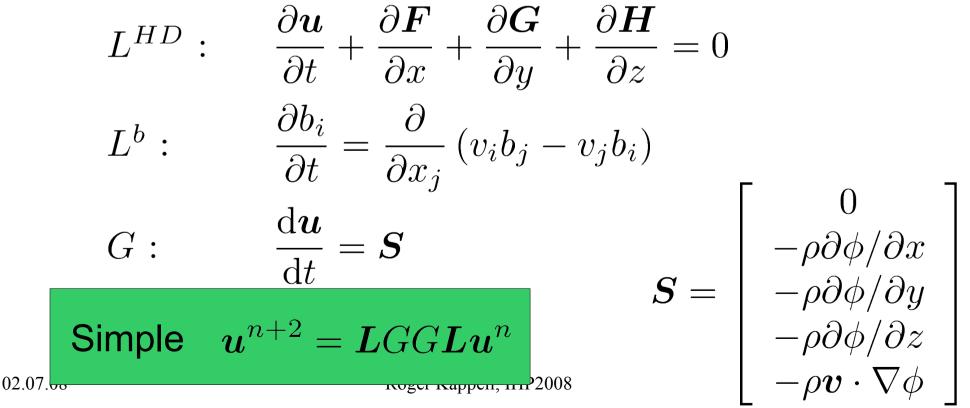
$$L_z^{HD}L_z^b L_y^{b}L_y^{HD}L_y^b L_x^{HD}L_x^b \boldsymbol{u}^{n+1} = \boldsymbol{u}^{n+2} + O(\Delta t^2)$$

02.07.08

Roger Käppeli, IHP2008

Incorporating gravity

- Fundamental ingredient for astrophysical simulations
- Use operator splitting



Incorporating gravity (2)

Difficulties:

1) EoS is called with as input the internal energy

 $p = p(\rho, e, \ldots)$

The internal energy is computed by subtracting the kinetic and magnetic energies from total energy

$$E = \frac{1}{2}\rho v^2 + e + \frac{b^2}{2}$$

This may lead to negative internal energies and make the code crash!

Weak coupling of gravity to MHD

 $ho oldsymbol{v}$.

Incorporating gravity (3)

• Difficulties:

2) Consider a steady flow:

$$\frac{\partial \boldsymbol{F}}{\partial x} + \frac{\partial \boldsymbol{G}}{\partial y} + \frac{\partial \boldsymbol{H}}{\partial z} \approx \boldsymbol{S}$$

 $ho \boldsymbol{v} \cdot$

Both fluxes and source term may be large expression

Very unlikely that potentially large changes in u cancel by the splitting: $u^{n+2} = LGGLu^n$

Even if cancellation exact, what about small perturbations in steady flow?

Weak coupling of gravity to MHD

Roger Käppeli, IHP2008

Incorporating gravity (4)

- Improve coupling by
 - Directionally splitting
 - Include half of the gravity before and after a fluid update

$$G_{x}/2: \quad \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = \frac{\boldsymbol{S}_{x}}{2}$$

$$L_{x}^{HD}: \quad \frac{\partial\boldsymbol{u}}{\partial t} + \frac{\partial\boldsymbol{F}}{\partial x} = 0 \qquad \boldsymbol{S}_{x} = \begin{bmatrix} 0 & -\rho\partial\phi/\partial x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\rho v_{x}\partial\phi/\partial x \end{bmatrix}$$

$$G_{x}/2: \quad \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = \frac{\boldsymbol{S}_{x}}{2}$$

Incorporating gravity (5)

- Further problem:
 - The gradients induced in u by gravitation may be wrongly interpreted as part of a propagating wave during the fluid update (flux limiters!)

Subtract hydrostatic equilibrium gradients in flux construction

Assuming

Zingale et al. 2002, similar but only PPM

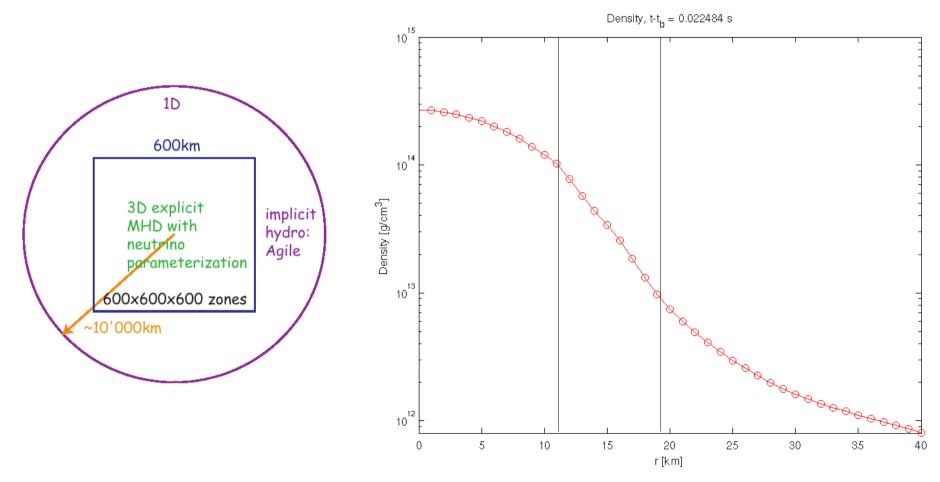
Sound speed

$$\frac{\partial Y_e}{\partial x} = 0, \ \frac{\partial s}{\partial x} = 0 \implies \frac{\partial}{\partial x} \begin{pmatrix} \rho \\ \rho v_x \\ E \end{pmatrix} = -\frac{1}{c^2} \begin{pmatrix} \rho \\ \rho v_x \\ E + p \end{pmatrix} \frac{\partial \phi}{\partial x}$$

Roger Käppeli, IHP2008

Adapting the mesh

Motivation



Roger Käppeli, IHP2008

Adapting the mesh (2)

- Simplest approach
 - Use non-equidistant Cartesian mesh

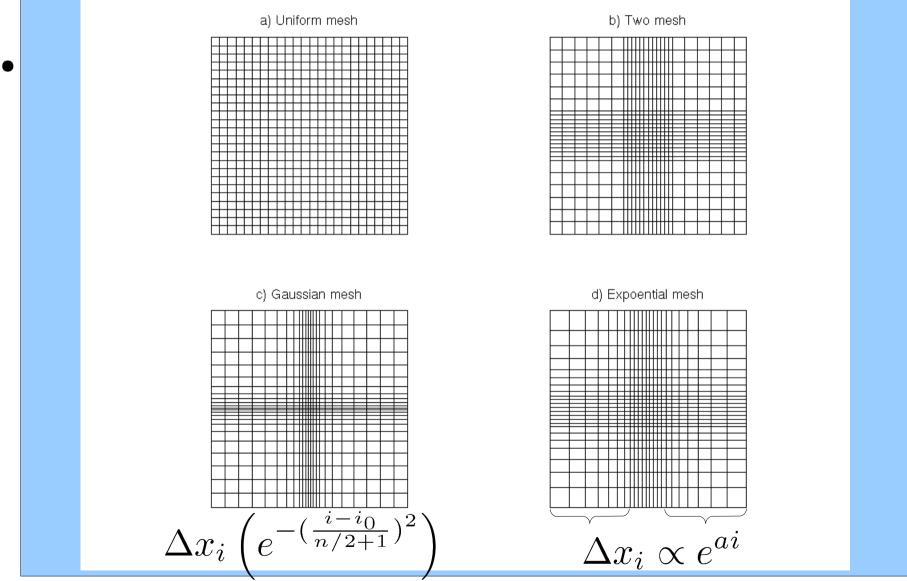
$$\Delta x_i = x_{i+1/2} - x_{i-1/2} = f(i)$$

$$\Delta y_j = y_{j+1/2} - y_{j-1/2} = f(j)$$

$$\Delta z_k = z_{k+1/2} - z_{k-1/2} = f(k)$$

- Better:
 - Adaptive Mesh Refinement (AMR)

Adapting the mesh (3)



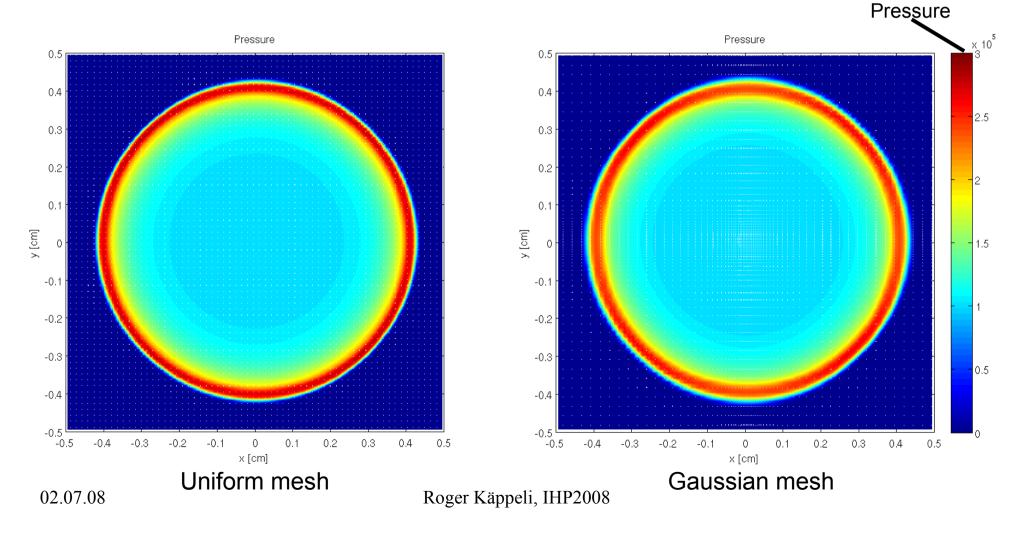
Roger Käppeli, IHP2008

Adapting the mesh (4)

- Testing
 - Sedov-Taylor blast wave (point explosion)
 - Magnetic explosion
 - Braking of a magnetic rotor
- Comparison between uniform and non-uniform meshes

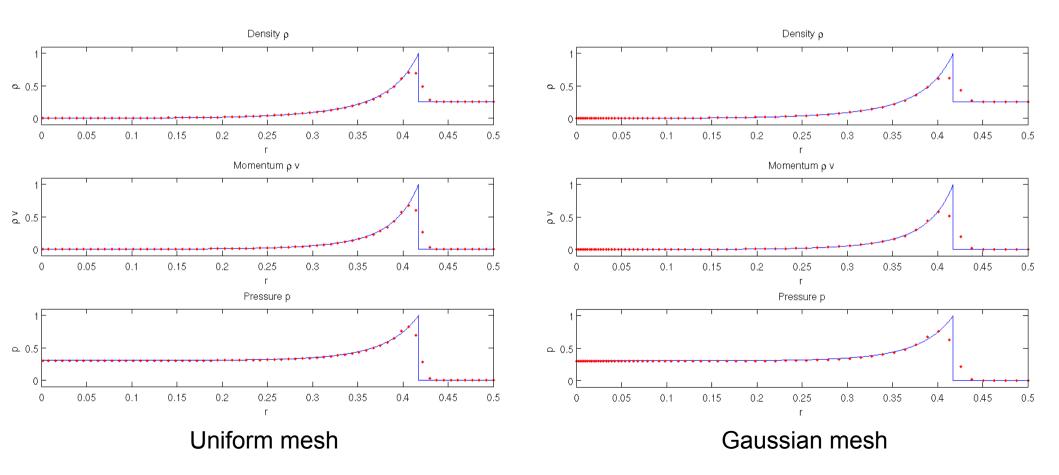
Adapting the mesh (5)

Sedov-Taylor blast wave (point explosion)

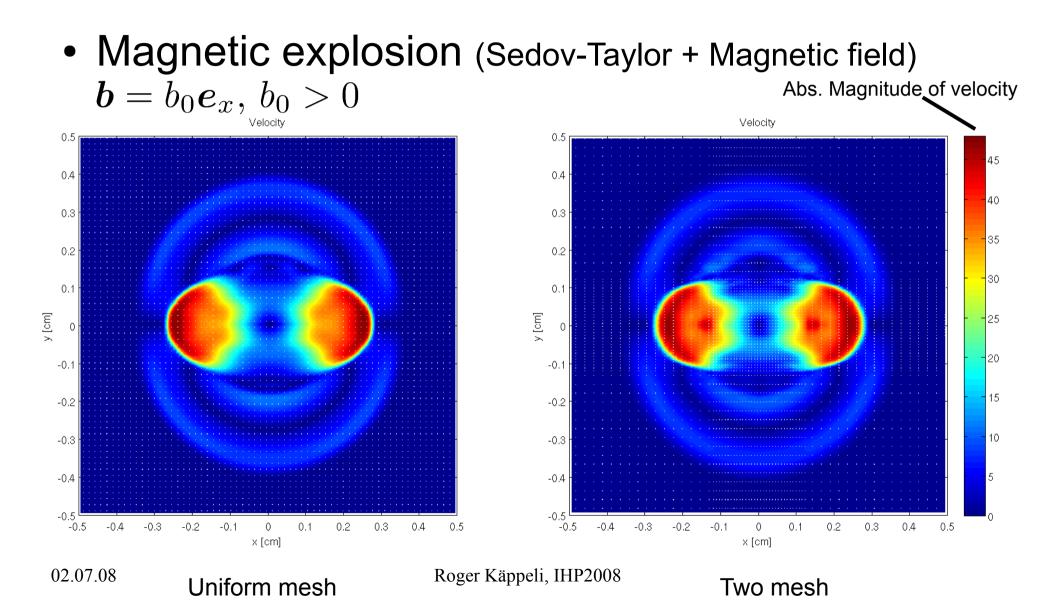


Adapting the mesh (6)

- Sedov-Taylor blast wave (point explosion)
 - Comparison to analytic solution



Adapting the mesh (7)

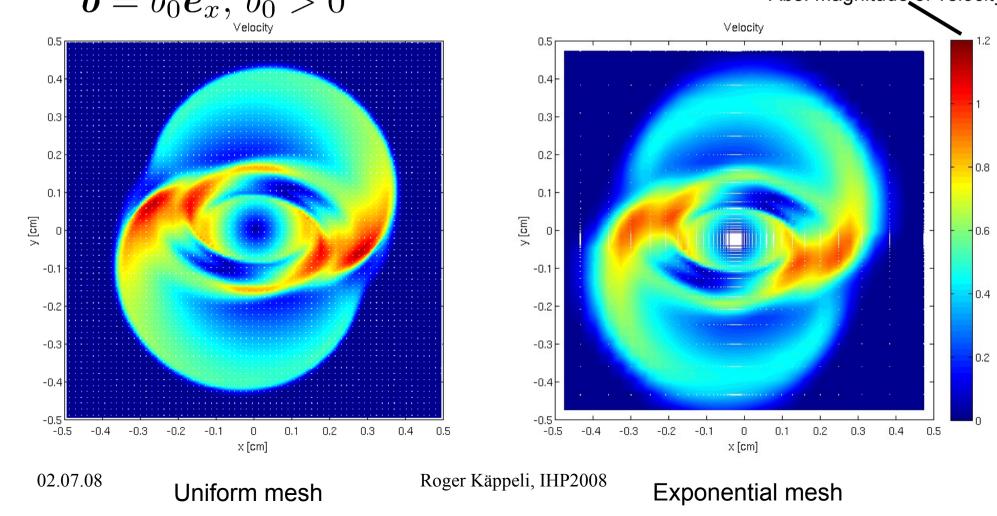


Adapting the mesh (8)

- Braking of a magnetic rotor (Balsara & Spicer 1999)
 - Dense, rapidly spinning cylinder (the rotor) in a light ambient fluid
 - Domain threaded by an initially uniform magnetic field
 - Rapidly spinning rotor causes torsional Alfvén waves to be launched (angular momentum lost)
 - Model for angular momentum loss of collapsing gas clouds in star formation (Mouschovias & Paleologou 1980)

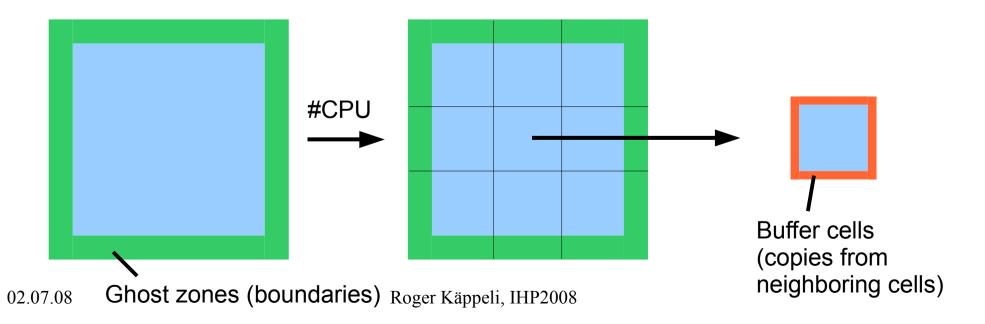
Adapting the mesh (9)

• Braking of a magnetic rotor (Balsara & Spicer 1999) $b = b_0 e_x, \ b_0 > 0$

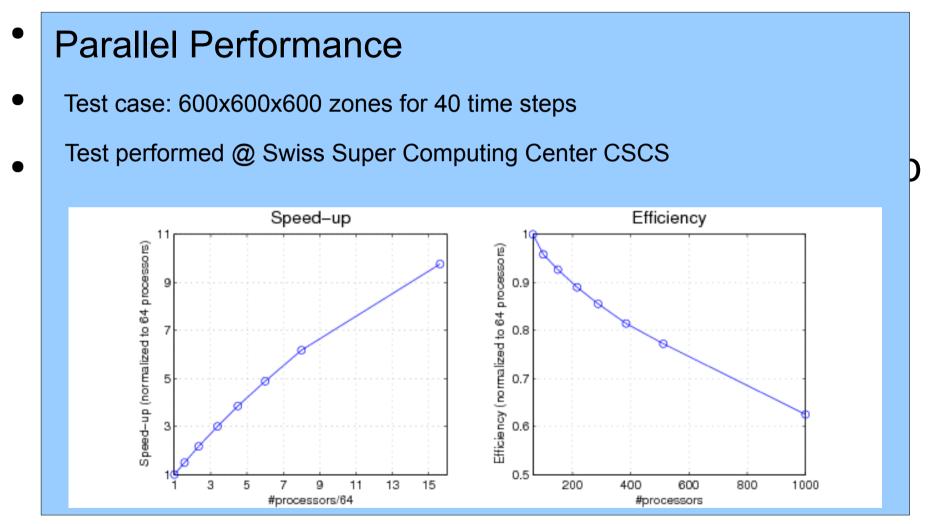


Parallelization

- Using Message Passing Interface (MPI)
- Cubic domain decomposition (chosen to min comm.)
- Use of non-blocking communication to overlap communication with computation



Parallelization (2)



From S. Scheidegger

Roger Käppeli, IHP2008

Summary

- Presented (partly) the MHD algorithm of our code
- Gravity incorporation into MHD code
- Improving the resolution by "adapting" the mesh
- Parallelization

