
# Stellar Winds and mass loss rates of young solar-like stars

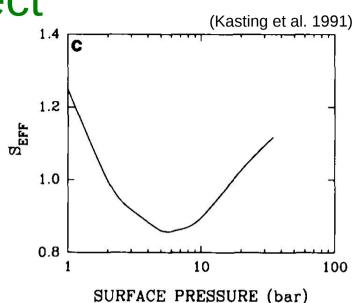
Bibiana Fichtinger Manuel Güdel

Institute of Astrophysics University of Vienna

Star-Planet Interactions and the Habitable Zone – Workshop Saclay 18-21 Nov. 2014

### The Faint Young Sun




- 30% less luminous
- completely frozen surfaces of Earth and Mars
- problem with habitability of young Earth and Mars



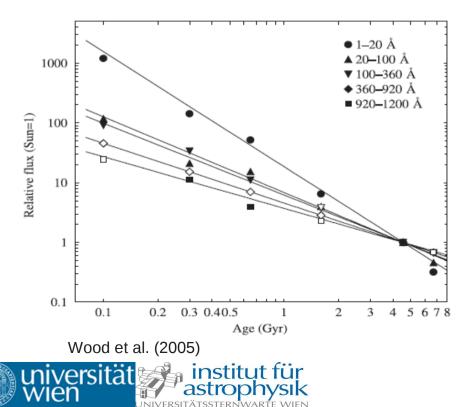


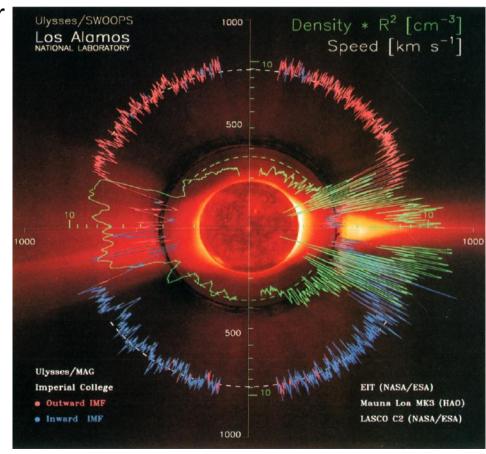
## **Greenhouse Effect**

- but Mars had liquid water on surface, therfore was warm enough
- CO2 atmosphere and greenhouse: any CO2 pressure insufficient to produce T > 273 K in young Mars



too much: evaporation of terrestrial oceans
too little: no liquid water on Mars
just right: **1.03 M < MZAMS < 1.07 M**


(Kasting 1988, 1991; Kasting et al. 1993; Sackmann & Boothroyd 2003)






## Solutions to the FYSP

- geological evidence for warmer climate
- solution to FYSP: a higher solar luminosity, a lower overall albedo or significantly enhanced greenhouse effect
- higher luminosity: higher initial stellar mass → stronger wind for young solar-like stars







### Observations of stellar winds

- JVLA: 27 antennas of 25 m diameter positioned along three equiangular arms of length 21 km
- maximum resolution of 1.4 arcsec at 1.4 GHz and 40 milliarcs at 50 GHz
- four standard configurations of maximum baseline lengths of 1, 3.4, 11, and 36 km, providing wide range of resolutions and image surface brightness sensitivities
- complete frequency coverage from 1 to 50 GHz



| Band    | Letter | Available                       | Antenna                   | Sensitivity <sup>a</sup>               |                                   |
|---------|--------|---------------------------------|---------------------------|----------------------------------------|-----------------------------------|
| (GHz)   | Code   | Bandwidth <sup>b</sup><br>(GHz) | SEFD <sup>c</sup><br>(Jy) | Continuum<br>(µJy beam <sup>-1</sup> ) | Line<br>(mJy beam <sup>-1</sup> ) |
| 1-2     | L      | 0.7                             | 400                       | 5.5                                    | 2.2                               |
| 2–4     | S      | 1.75                            | 350                       | 3.9                                    | 1.7                               |
| 4-8     | С      | 3.5                             | 300                       | 2.4                                    | 1.0                               |
| 8-12    | Х      | 3.8                             | 250                       | 1.8                                    | 0.65                              |
| 12-18   | Ku     | 5.5                             | 280                       | 1.7                                    | 0.61                              |
| 18-26.5 | Κ      | 8                               | 450                       | 2.3                                    | 0.77                              |
| 26.5-40 | Ka     | 8                               | 620                       | 3.2                                    | 0.90                              |
| 40-50   | Q      | 8                               | 1100                      | 5.6                                    | 1.4                               |

EVLA Band Characteristics

## Observations of stellar winds

- direct observations: free-free radio emission of young solar analogs
- measuring radio bremsstrahlungs flux of an ionized wind
- if wind mass loss rate can be measured, the young Sun's total mass can be found by integration back in time

|                |        |               | d    | T <sub>eff</sub> | Mass          | Radius        | log L <sub>x</sub> | Prot   | Age   |
|----------------|--------|---------------|------|------------------|---------------|---------------|--------------------|--------|-------|
| Name           | HD     | Spectral Type | (pc) | (K)              | $(M_{\odot})$ | $(R_{\odot})$ | (erg/s)            | (days) | (Gyr) |
| $\chi^1$ Ori   | 39587  | G1 V          | 8.7  | 5890             | 1.01          | 0.96          | 28.99              | 5.24   | 0.3   |
| EK Dra         | 129333 | G1.5 V        | 34.0 | 5870             | 1.06          | 0.95          | 29.93              | 2.68   | 0.1   |
| $\kappa^1$ Cet | 20630  | G5 V          | 9.2  | 5750             | 1.02          | 0.93          | 28.79              | 9.21   | 0.65  |
| $\pi^1$ UMa    | 72905  | G1.5 V        | 14.3 | 5850             | 1.03          | 0.95          | 29.10              | 4.90   | 0.3   |

Table 2. Target characteristics from the Sun in Time Program in Ribas et al. (2005) and Güdel (2007).



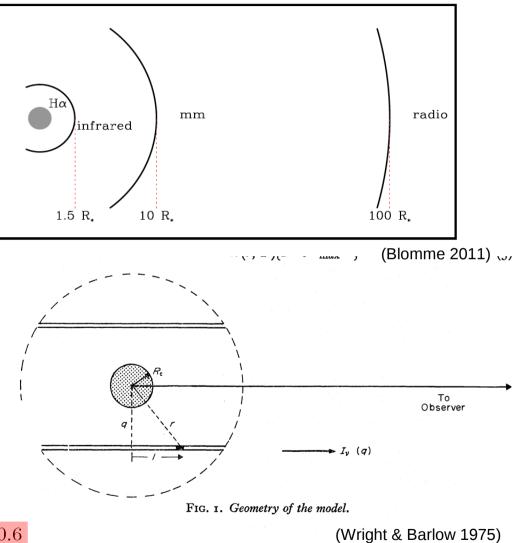


## Radio free-free emission of ionized winds

• for hot stars:

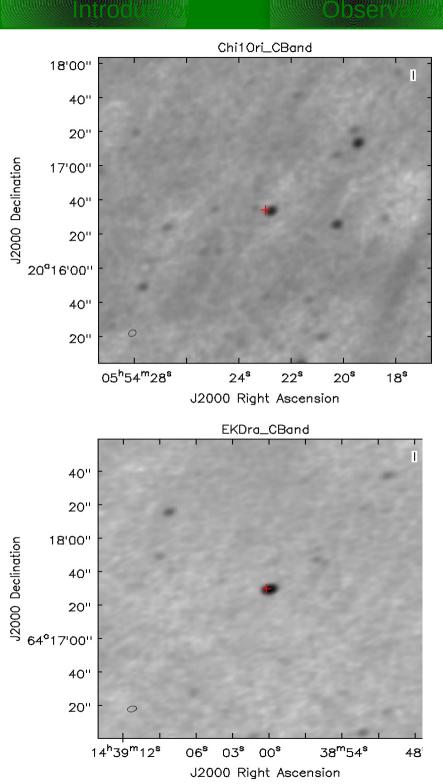
• cool star wind:

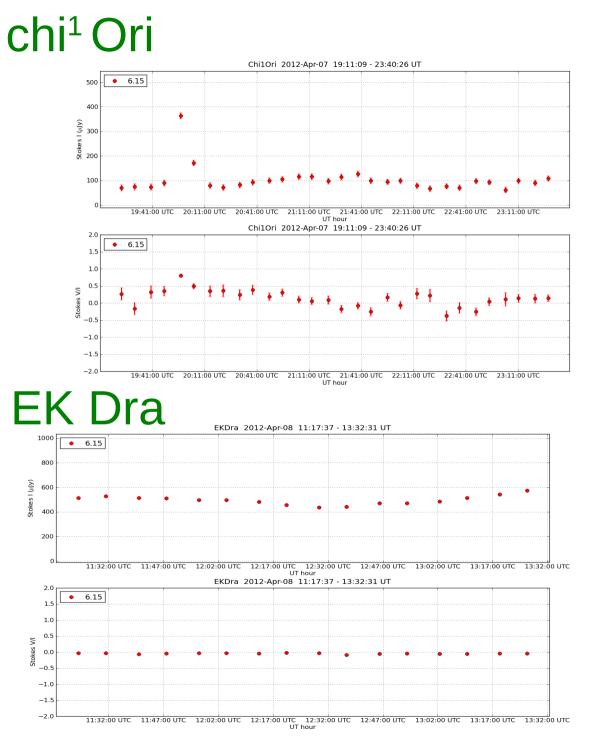
universitat


A

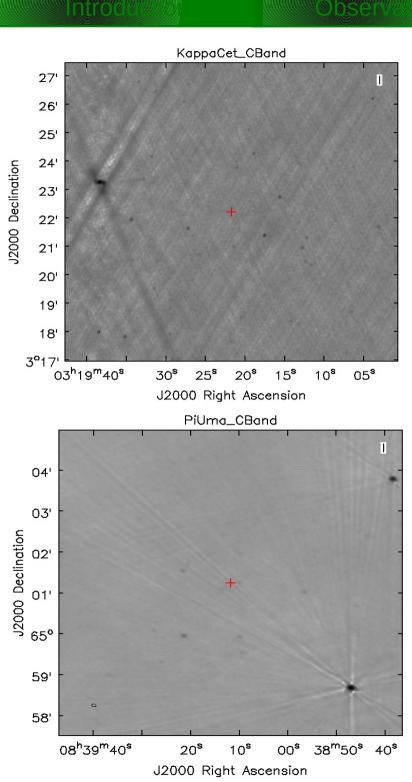
wien

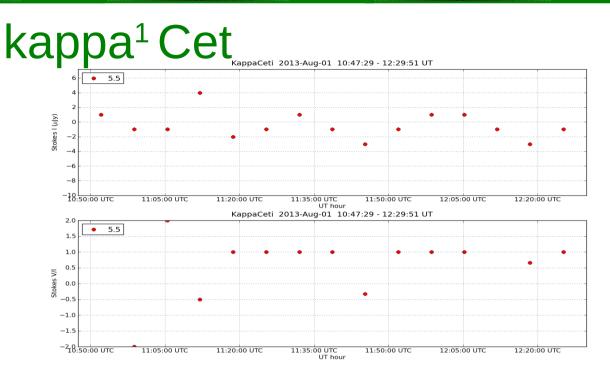
 need to calculate radio emission and absorption for spherical wind


$$S_{\nu} = 8.3 \times 10^{-4} \text{ mJy} \left(\frac{\dot{M}}{10^{-10} M_{\odot}/\text{yr}}\right)^{4/3} \\ \left(\frac{v}{400 \text{ km/s}}\right)^{-4/3} \left(\frac{T}{10^6 \text{ K}}\right)^{0.1} \left(\frac{d}{10 \text{ pc}}\right)^{-2} \nu_{\text{GHz}}^{0.6}$$

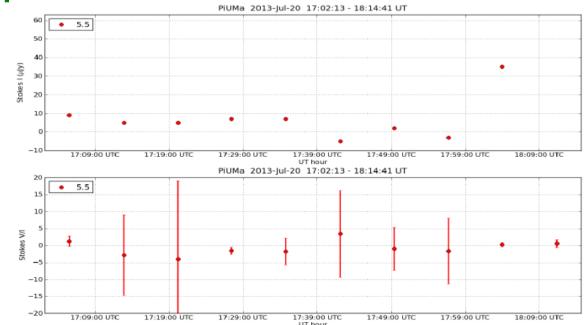

astrophysik







#### Results






#### Results



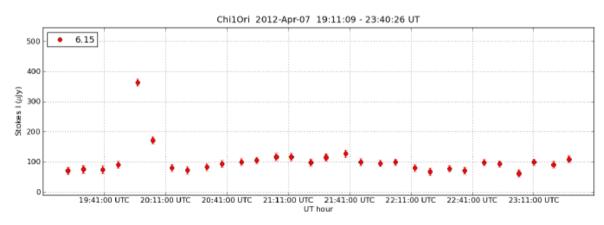


### pi<sup>1</sup>UMa



### Radio fluxes

Thermal emission:


universitat

- positive slope in the spectrum (usually  $\alpha = 0.6$ )
- no polarisation (Stokes V)
- no large time variation → hint of presence of flares!

astrophysik

| Object         | $S_{\nu}[\mu Jy]$ Stokes I |               | $S_{\nu}[\mu Jy]$ Stokes V |              |  |
|----------------|----------------------------|---------------|----------------------------|--------------|--|
|                | 6 GHz                      | 14 GHz        | 6 GHz                      | 14 GHz       |  |
| $\chi^1$ Ori   | $110 \pm 0.7$              | $117 \pm 2.7$ | $14 \pm 0.6$               | $12 \pm 1.1$ |  |
| EK Dra         | $593 \pm 1.7$              | $73 \pm 2.4$  | $-22 \pm 0.8$              | -            |  |
| $\kappa^1$ Cet | 9                          | 9             | 6.9                        | 8.7          |  |
| $\pi^1$ UMa    | 23.1                       | 6.3           | 8.4                        | 6.6          |  |

**Table 3.** The first two rows are the detected objects and their fluxes and uncertainties in Stokes I and Stokes V, respectively. The last two rows are the non-detections; their fluxes are determined by taking the 3  $\sigma$  as estimation, where  $\sigma = \sqrt{(rms)^2}$ .

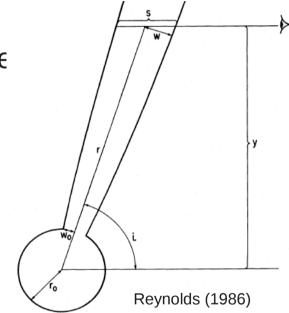


 chi<sup>1</sup> Ori & EK Dra (detections): active stars, flares, Stokes V component → radio emission is mostly non-thermal emission and hence no stellar wind!



- detections: no mass loss rates for thermal wind
- non-thermal radio sources cannot be significantly larger than the stellar disk
- $\rightarrow$  radio source must be located close to stellar surface :  $R_v = R_*$
- non-thermal emission must originate from above optically thick surface → upper limits for mass loss

$$\frac{R(\nu)}{R_{\odot}} \approx 6 \left(\frac{\nu}{10 \text{ GHz}}\right)^{-2/3} \left(\frac{T}{10^4 \text{ K}}\right)^{-1/2} \left(\frac{\dot{M}}{10^{-10} M_{\odot} \text{ yr}^{-1}}\right)^{2/3} \left(\frac{v_{\infty}}{300 \text{ km s}^{-1}}\right)^{-2/3}$$


|               | 10 <sup>4</sup> K                            | 10⁵ K                                        | 10 <sup>6</sup> K                            |
|---------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| EK Dra (C)    | 1.3 x 10 <sup>-13</sup> M <sub>sun</sub> /yr | 4.0 x 10 <sup>-12</sup> M <sub>sun</sub> /yr | 1.3 x 10 <sup>-10</sup> M <sub>sun</sub> /yr |
| EK Dra (Ku)   | 6.9 x 10 <sup>-13</sup> M <sub>sun</sub> /yr | 2.2 x 10 <sup>-11</sup> M <sub>sun</sub> /yr | 6.9 x 10 <sup>-10</sup> M <sub>sun</sub> /yr |
| chi¹ Ori (C)  | 1.3 x 10 <sup>-13</sup> M <sub>sun</sub> /yr | 4.2 x 10 <sup>-12</sup> M <sub>sun</sub> /yr | 1.3 x 10 <sup>-10</sup> M <sub>sun</sub> /yr |
| chi¹ Ori (Ku) | 7.2 x 10 <sup>-13</sup> M <sub>sun</sub> /yr | 2.3 x 10 <sup>-11</sup> M <sub>sun</sub> /yr | 7.2 x 10 <sup>-10</sup> M <sub>sun</sub> /yr |





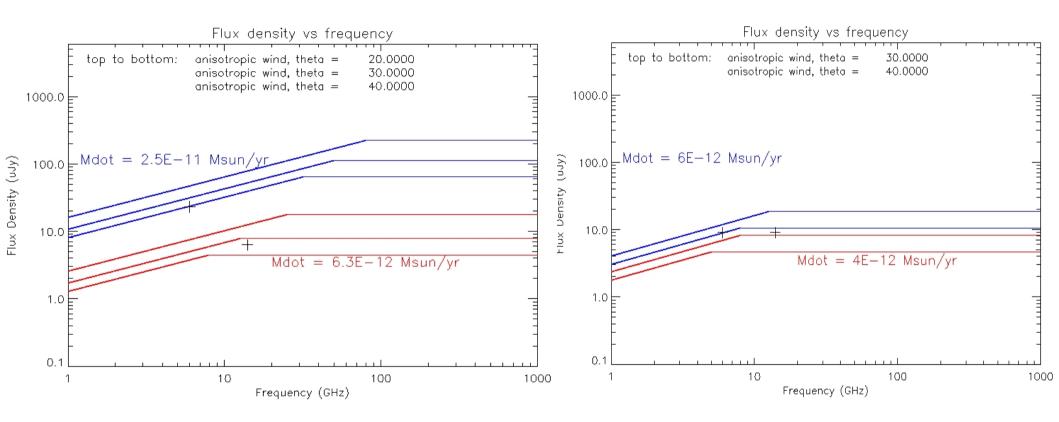
- kappa<sup>1</sup> Cet & pi<sup>1</sup> Uma (non-detections): place upper limits for mass loss rates
- assume well-collimated anisotropic ionized flow
- for same wind mass loss rate the outflowing gas is de
- a given radio emission requires *lower* mass loss rate

$$S_{\nu} = 5.1 \times 10^{11} \left(\frac{\dot{M}}{v}\right)^{4/3} T^{0.1} v^{0.6} d^{-2}/\theta \left(sin(i)\right)^{1/3},$$



• non-detections: for  $\Theta = 40^{\circ}$  and v = 400 km/s

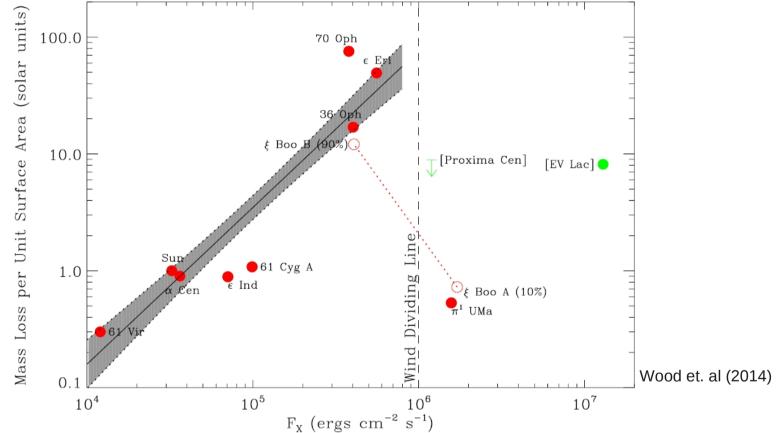
•  $\pi^1$  UMa:  $\dot{M} < 2.5 \times 10^{-12} \text{ M}_{\odot}/\text{yr}$  in C-Band  $\dot{M} < 6.3 \times 10^{-12} \text{ M}_{\odot}/\text{yr}$  in Ku-Band •  $\kappa^1$  Cet:  $\dot{M} < 6 \times 10^{-12} \text{ M}_{\odot}/\text{yr}$  in C-Band  $\dot{M} < 4.1 \times 10^{-12} \text{ M}_{\odot}/\text{yr}$  in Ku-Band






### optically thick wind

 $\pi^1$  UMa


к¹ Cet







### Comparison to Lyman-α absorption



For  $\pi^1$  UMa:

universität wien

- Wood et al. (2014) Lyman- $\alpha$  absorption:  $\dot{M} = 0.5 \dot{M}_{\odot}$  (rotation?)
- Drake et al (2013) considering CMEs:  $\dot{M} = 150 \ \dot{M}_{\odot}$
- our observation:  $\dot{M} = 300 \ \dot{M}_{\odot}$

institut für astrophysik

### Conclusions

- a higher solar luminosity for the young Sun could be possible if the initial solar mass was higher
- radio observations of young solar analogs lead to upper limits for the mass loss rate of the young Sun
- direct observations are still challenging
- trace the mass loss of the young Sun by integration back in time
- a result of 2 % would be nice



