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Zeitschrift für Astrophysik, Bd. 36. S. 245-274 (1955). 

Über Gezeitenreibung beim Zweikörperproblem. 
Von 

HORST GERSTENKORN, Hannover. 
Mit 4 Textabbildungen. 

(Eingegangen am /3. Dezember 1964.) 

Anknüpfend an die Darwinschen Untersuchungen wird das Zweikörperproblem 
mit Gezeitenreibung behandelt: Zwei Massen M und m vollführen unter ihrer 
gegenseitigen Gravitation eine Keplerbewegung umeinander. M rotiert außerdem 
um ihre Figurenachse, die um den beliebigen Winkel e gegen die Bahnnormale 
geneigt sein darf. m erzeugt auf M Gezeiten. Der Gezeitenreibung wird durch 
ein Bremsmoment Wlp Rechnung getragen, das für den Spezialfall „schwacher" 
Reibung in Anlehnung an DARWINs Gedankengänge leicht angegeben werden kann. 
In Kapitel 1 wird - für kreisförmige Bahnen - das Problem auf die Lösung einer 
emhgen Differentialgleichung zurückgeführt. Diese analytisch nur in Grenzfällen 
integrable Gleichung zwischen der Umlaufsfrequenz wund dem Winkel rJ zwischen 
Bahnnormale 8 und Gesamtdrehimpuls © wird in Kapitel 2 mit den Daten des 
heutigen Erde-Mond-Systems numerisch gelöst und der Zustand dieses Systems 
in die Vergangenheit bis zu einem Anfangsstadium zurückverfolgt; dabei ergibt 
sich als kürzeste Distanz genau die Rochesche Grenzentfernung a = 2.89 R und 
als dazugehöriger Wert der Neigung e = 45.7°. Kapitel 3 behandelt die Zeit-
abhängigkeit des Ablaufs beim Erde-Mond-System; unter Verwendung nicht ganz 
gesicherter empirischer Werte wird die seit jenem Stadium verflossene Zeit zu 
2.50 Milliarden Jahren gefunden. In Kapitel 4 wird die grundlegende Differential-
gleichung für ein allgemeines System M, m diskutiert. Frühe Zustände sind ge-
nerell gekennzeichnet durch retrograde Bewegung. Erst später kann die Bewegung 
rechtläufig werden. Kapitel 5 und Anhang I untersuchen die Frage, wieweit die 
Anwendbarkeit des Formalismus auf das Erde-Mond-System durch die Anwesen-
heit der Sonne beeinträchtigt wird. Dabei ergibt sich, daß sich der Gesamtdreh-
impuls D seit dem Anfangsstadium durch den Sonneneinfluß nur um einige (etwa 
2 % ) Prozent verringert haben kann. Anhang II erweitert die Betrachtungen auf 
den Fall endlicher Bahnexzentrizität e. 

1. Grundlagen. Herleitung der charakteristischen Differentialgleichung. 
DARWIN (1, 2, 3] untersucht die Gezeiten, die ein Satellit auf seinem 

Planeten erzeugt, und die damit verbundene Gezeitenreibung. Speziell 
behandelt er das System Erde-Mond. Ausgangspunkt seiner Betrach-
tungen ist das gezeitenerzeugende Potential V= 3 fmR2 (cos2z-!)/2r3• 

Dabei bedeuten m die Mondmasse, R den Erdradius, z die Zenitdistanz 
des Mondes, r die Entfernung Erde-Mond und f die Gravitations-
konstante. V läßt sich umwandeln in eine Summe von Kugelflächen-
funktionen 2. Art, jede multipliziert mit einem zeitabhängigen Koeffi-
zienten. Diese Koeffizienten wiederum lassen sich als "series of simple 
time harmonics" schreiben. V besteht also aus einer Anzahl von Termen 
der Form 3 fmR 2 S cosvt/2a3, wobei Seine Kugelflächenfunktion 2. Art 
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Die Oberfläche kann näherungsweise als verlängertes Rotationsellipsoid 
aufgefaßt werden, dessen Achse für T = 0 in Richtung der Verbindungs-
linie der Mittelpunkt beider Massen M, m weist, und dessen Elliptizität 
gegeben ist durch 15 fmR/4 gr3= 15 mR3/4 Mr3= 5 ll./2 mit 

3mR3 

ll. = 2Mr3 . (2) 

Diese Elliptizität 5ll./2, d. h. die Differenz der des Gezeiten-
ellipsoides, bezogen auf die große Halbachse, stellt ein Maß für die 
Größe der Gezeitendeformation darl. 

w 

Abb. 1. Das Zustandekommen des Bremsmomentes. 

Bezeichnet man die Pole dieses Ellipsoides als „Flutberge", so läßt 
sich die Gezeitenerscheinung anschaulich beschreiben durch diese beiden 
Flutberge, die auf der rotierenden Erde M täglich etwa einmal um-
laufen; ihre Verbindungslinie ist für T =f= 0 um den kleinen Winkel {} 
gegen die Gerade M, m, gekennzeichnet durch den Einheitsvektor t 0, 

ausgelenkt. Deren Durchstoßpunkt Z durch die Oberfläche, Zenital-
punkt genannt, bewegt sich über diese Oberfläche mit einer Relativ-
geschwindigkeit - [wE- w, R t 0 ] (s. Abb. 1). Der Flutberg P bleibt 
um die Strecke [wE- w, R t 0] T hinter dem Zenitalpunkt zurück. Die 
Kleinheit des Winkels{} ist Bedingung für schwache Reibung. Die Aus-
lenkung erfolgt in der Ebene, die aufgespannt wird vom Vektor t 0 in 
Richtung M, m einerseits, vom Vektor der Relativgeschwindigkeit 
[wE- w, R t 0] andererseits. Falls die Figurenachse von M dieselbe 
Richtung wie die Bahnnormale besitzt, ist diese Ebene mit der Äquator-
ebene von M identisch; dagegen ist sie bei Vorhandensein eines end-
lichen Neigungswinkels e zwischen Figurenachse und Bahnnormale 
gegen den Äquator geneigt und zeitlich mit t 0 veränderlich. Auch der 
Betrag des Auslenkungswinkels schwankt dann infolge seiner Abhängig-
keit von 1 [wE- w, t 0] I · Im Gegensatz dazu beträgt die Verspätung der 

1 ex selbst hat die Bedeutung der Elliptizität im Fall der sog. „Gleichgewichts-
flut", bei der die Gravitationswirkung der deformierten Materie l: s nicht mit-
berücksichtigt wird. Beim System Erde-Mond beträgt ex heute 8.38 · 10-8• 

17* 

© Springer-Verlag • Provided by the NASA Astrophysics Data System 

Tuesday 18 November 14



19
55
ZA
..
..
.3
6.
.2
45
G

258 HORST GERSTENKORN; 

mit der sog. „Rocheschen Grenze" übereinstimmt, für die bekanntlich 
gilt [vgl. z.B. ENz: Math. Wiss. VI, 2, 27, S. 55 (1922-34)]: 

aRochefR = 2.44. vß <1M • 
<1m 

Mit am= 3.34 für die Dichte des Mondes und aM = 5.52 für die der Erde 
ergibt sich ar = 2.89 R, die zugehörige Umlaufzeit ist Tr = 6.86h. 

Tr ist die kürzeste Zeit, in der m stationär auf einer Kreisbahn um-
laufen kann, und es ist bemerkenswert, daß auch nach der obigen 
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Abb. 3. Die Elemente des Systems Erde-Mond. Als Abszisse wurde der Parameter i- aufgetragen. 
-r = 3.38 entspricht dem heutigen Zustand. Der Mittelteil der Abbildung enthält als Ordinate zu-
nächst die Lösung p(-r), die gemäß (13) die dritte Wurzel der Umlaufsfrequenz in der speziellen 
Einheit darstellt. Aus dieser Kurve sind die anderen abgeleitet. Den Zusammenhang zwischen i-
und der Zeit t veranschaulicht der obere Teil der Abbildung; Beachtung verdient die relative Kürze 
des zwischen -r = 1.06 und -r = 2.60 verstrichenen Zeitraumes. Der untere Teil der Abbildung zeigt 
die Winkel e = :$) B• und 1J = 1: B' ;$}.Im Mittelteil sind ferner dargrstellt das Verhältnis a/R 
Bahn- zu Erdradius, das bei -r = 1.06 den Minimalwert 2.89 besitzt, ferner die mechanische Energie 
des Systems und die Drehimpulse DB und D Rot der Bahn und der Eigenrotation, beide auf den 

Gesamtdrehimpuls D bezogen. 
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Tides and the evolution of the Earth-Moon system 

D. J. Webb Institute of Oceanographic Sciences, Wormley, Godalming GU85UB 

Received 1982 January 4; in original form 1981 July 7 

Summary. A model of the tides in a hemispherical ocean is used to investigate 
the effect of changes in the Earth’s rotation rate on the power dissipated by 
the ocean tides. The results obtained are thenused in an idealized astronomical 
model to investigate how they affect the history of the Earth-Moon system. 

Using the tidal model it is found that at rotation rates higher than that of 
the present Earth, the power dissipated by the semi-diurnal tides in the ocean 
drops off rapidly as a result of the increased tidal frequency. Thus if the 
Earth’s rotation rate is doubled from its present value, then the rate of energy 
dissipation in the ocean is reduced to approximately one-third of its present 
value and the tidal torque is reduced by a factor of about 6. 

The present value for secular acceleration of the Moon, calculated from 
the results of the tidal model is -30.5 arcsec century-’. Using this value in 
the astronomical model, which has the Moon and Sun in circular orbits above 
the equator, and assuming that the tidal torque is independent of the tidal 
frequency, the Gerstenkorn event is predicted to have occurred 1.3 x 109yr 
ago. 

When the astronomical model is run with a torque determined at all times 
from the tidal model, the reduction in the energy dissipated early in the 
history of the system, leads to a Gerstenkorn date of 5.3 x 109yr ago. 
However, dissipation within the solid earth is found to be important early in 
the history of the system and when this effect is.included it gives a date for 
the Gerstenkorn event of 3.9 x 1 09yr ago. 

1 Introduction 

Measurements of the secular acceleration of the Moon in its orbit have been used by a 
number of authors to obtain constraints on how the Earth-Moon system was formed and 
evolved (Darwin 1880; Gerstenkorn 1955, 1967, 1969; Slichter 1963; MacDonald 1964; 
Sorokin 1966; Ruskol 1966; Goldreich 1966; Turcotte, Cisne & Nordmann 1977; Lambeck 
1978; Singer 1968). Lambeck (1977) has recently reviewed much of the field. Other useful 
reviews are found in Brosche & Sundermann (1978) and Rosenberg & Runcorn (1975). 
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angular velocity (rad day-’) 

Figure 2. The average power dissipation curves plotted as a function of the angular velocity of the tide for 
the two cases when w is equal to 1.93 s2 and 1 .OO S2.  The power is in petawatts and the angular velocity 
is in units of radians per present Earth day. 

the torque times the frequency of the tide, so the torque is reduced to a sixth of its present 
value. These results are similar to the ones found by Webb (1982) and the explanations given 
there for the behaviour, in terms of the underlying modes of the ocean, should still apply. 

To compare the model estimates of power dissipation with estimates made for the present 
oceans it is necessary to make three corrections. First the rms amplitude of the present M2 
equilibrium tide is 0.126 m. Secondly the area of the model is 0.8 of the area of the actual 
deep ocean and finally, to allow for the effect of Earth tides on the ocean (Hendershott 
1972), the model results must be multiplied by (1 + kz - h2)’, where k2 and hz are Love 
numbers. 

giving a corrected power dissipa- 
tion rate of 3.07 TW (where 1 terrawatt = 10”W). This result compares with 3.06 TW cal- 
culated by Lambeck (1977) on the basis of astronomical observations. The close agreement 
is almost certainly coincidental especially as the present ocean is not an average one. However 
the agreement does indicate that the tidal model is reasonably realistic. 

For the M2 tide the total correction factor is 9.45 x 

3 The astronomical model 

The complete solution of the lunar orbit requires a complex and lengthy calculation 
(Goldreich 1966) so for the investigative purposes of this paper a simplified model was used. 
In this model, the Moon is in a circular orbit about the Earth, the Earth is in a circular orbit 
about the Sun, and the planes of the orbits are chosen to coincide with the Earth’s equatorial 
plane. 

With these constraints two semi-diurnal tides are produced. These are the M2 tide due to 
the Moon and the S2 tide due to the Sun. Their angular velocities denoted by w, and w, are, 

w, = 2(!2 - n ) ,  

us = 2(i2 - s), 

where C l  is the angular velocity of the Earth, n the angular velocity of the Moon about the 
Earth and s the angular velocity of the Earth about the Sun. 

The power dissipated by the lunar tides results in a torque which slows down the Earth’s 
rotation and increases the angular momentum of the Moon in its orbit. The power transferred 

 by guest on N
ovem

ber 17, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

present

Tuesday 18 November 14



268 D. J .  Webb 

F w r e  3. The Earth-Moon separation measured in Earth radii and plotted as a function of time for the 
cases: (a) torque independent of frequency, (b) power dissipated independent of frequency, (c) power 
dissipation from ocean model, (d) power dissipation in both the ocean and the solid Earth. 

Earth's rotation rate is large, results in a much slower initial evolution of the orbit. The 
Gerstenkorn event is predicted as occurring 5.3 x 109yr ago, which really means it would 
have never occurred as this is before the SoIar System was formed. 

4 Dissipation in the solid Earth 

So far the power being dissipated within the solid Earth by Earth tides has been neglected. 
To include this term it is necessary to know the value of Q-l, the fraction of the Earth's 
tidal energy dissipated in each tidal cycle. Unfortunately this quantity is not known accurately 
but Lambeck (1980) has given a lower limit of 1/200 and an upper limit of 1/130. Using 
equation (10.2.4a) of Lambeck (1980), with the phase e given by, 

sine = Q-' = 1/150, 

then the power dissipated by the present M2 tide in the solid Earth is 0.204TW. This is 
approximately 7 per cent of the power dissipated by the M2 tide in the oceans and is usually 
neglected. 

The frequency of the tides is too low to be seriously affected by the resonances of the 
solid Earth so the same value of Q-' should also be valid when the Earth rotated faster. As a 
result when the Earth's rotation rate was approximately twice its present value, the relative 
importance of torque due to the Earth tides would have been six times larger. (A factor of 
2 from the rotation rate and 3 from the reduction of the ocean tides.) 

The Earth tides would have then dissipated 50 per cent of the power dissipated by the 
ocean tides and so would have had a significant effect on the timing of the Gerstenkorn 
event. The Earth tides were therefore included in the astronomical model by adding constant 
torque terms (equation 10) for the M2 and S2 tides, with W,, chosen so that the power 
dissipated by the present M2 tide is 0,247 TW. The corresponding figure for the S2 tide is 
0.052 TW. These values assume that the Moon and Sun's orbits lie exactly above the equator. 

The present average secular acceleration of the Moon is increased, by the Earth tide 
terms, to - 32.5 arcsec century-*. The resulting change of the Earth-Moon separation as a 
function of time is plotted as curve d in Fig. 3. Over the last 2 x  109yr the effect of the 
Earth tides is small, but at earlier periods the power dissipated within the Earth has a signifi- 
cant effect and it brings the time of the Gerstenkorn event forward to 3.9 x 109yr ago. 
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984 O. Néron de Surgy & J. Laskar: On the long term evolution of the spin of the Earth

Fig. 3. a Percentage of the ratio of the speed of rotation at �500 Myr
over the present one for various values of the tidal delay �t and the vis-
cosity ⌫. The two bold lines delimit an acceptable range, in agreement
with the observations from sediments and fossils. b Same percentage at
�2 000 Myr. The bold line corresponds to the observation of Williams
(1989).

possible to give an rough estimate to it, knowing that the energy
dissipated in the oceans accounts for about 90 or 95% of the total
(Zschau, 1978), (Cazenave, 1983), (Mignard, 1983), (Lambeck,
1988). In this case, the lowest �t would equal 30 or 60 seconds,
hence a largest ⌫ of about 600 or 800 m2s�1 if one relies on
the�2 Gyr observations, and about 4400 or 4700 m2s�1 for the
�500 Myr ones.

5. Williams’ scenario for the history of the Earth’s obliquity

The dissipation mechanisms presented therein give us some
constraints on scenarios of the Earth’s evolution, and our aim
here would be to provide a general framework in which all
scenario for the evolutions of the Earth’s obliquity should be
described. As an example, we show here that the dynamical
constraints obtained here allow to question the scenario pro-
posed by Williams (1993). Interpreting observations of various
deposits in the Earth’s soil which depend on weathering con-

Fig. 4a. Example of possible evolution of the Earth’s obliquity for 5
Gyr in the future, for �t = 600 s. The background of the figure is
the same one as in Fig. 1, and is a global view of the stability of the
obliquity, obtained by means of frequency map analysis (see Laskar and
Robutel, 1993). The precession constant (on the left) is plotted against
the obliquity: the two bold curves correspond to the minimum and
maximum values reached by the obliquity. The right y-axis gives the
corresponding time for the motion. The non-hatched zone corresponds
to very regular regions, and we actually observe that in these regions,
the motion suffers only small (and regular) variations. The hatched
parts are the regions of strong chaotic behavior. Indeed, in the present
simulation, as soon as the orbit enters this chaotic zone, very strong
variations of the obliquity are observed, and very high values, close to
90 degrees, are reached.

Fig. 4b. Same as Fig. 4a, but with a difference of 10�8 degree in the
initial obliquity.

ditions, Williams devised the following scenario for the past
evolution of the Earth’s obliquity:

a) a slow and regular decreasing from 70� to 60� between
�4.5 Gyr and �630 Myr;

Néron de Surgy & Laskar, 1997

range of 
observations

observations

present 
value
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should clarify the long-term evolution of Earth’s tidal dissi-
pation and dynamical ellipticity, which are thought to change
as a function of continent/ocean configuration, core-mantle
processes and crustal loading (e.g., ice sheets).

Glacial loading of the Earth’s crust, i.e. climate friction, is
thought to engender “obliquity-oblateness feedback” and
secular change in Earth’s obliquity (tilt) angle (Bills, 1994;
Rubincam, 1995; Ito et al., 1995; Levrard and Laskar, 2003).
Thomson (1990) noticed systematic differences between the
spectral lines of the Pleistocene SPECMAP stack (Imbrie
et al., 1984) and those of the astronomical parameters, sug-
gesting that the recorded signal was perturbed as a result of

the repeated massive ice sheet loading/unloading in the
Northern Hemisphere. Thomson discovered a differential
phasing in the obliquity and precession bands of SPECMAP
that could be explained by varying the precession rate p
by! 10% at 100 000-year timescales (the scale of the glaci-
ations). Laskar et al. (1993a, b) point out that such a change
could allow for passage of p into resonance with the
s6" g6þg5 precession term and induce a ~0.5$ increase in
maximum obliquity. Modeling shows that predicted longer
length-of-day in the near future will force precession into this
resonance (see Figure 14 in Laskar et al., 2004). However,
thus far, no evidence has been presented that Earth’s
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FIGURE 4.9 Earth rotation deceleration from tidal energy dissipation. (a) The Moon raises a tidal bulge that is delayed due to friction between the oceans
and crust, and within the solid Earth, by an angle d, which is 0.2$ for the solid M2 tide and ~65$ for the net ocean M2 tide (Munk, 1997; Ray et al., 2001).
Gravitational force from the Moon acts on the offset bulge, producing a torque on the Earth in a direction opposite from the rotation, causing the Earth to
decelerate. (b) Deceleration of the Earth over the past 2 billion years based on geological data. The data shown are from Williams (2000). Corals, bivalves and
brachiopods secrete daily growth bands that modulate annually; fossils indicate more growth bands per year back in time. Stromatolite laminations have been
interpreted similarly. Tidalites are an alternate, relatively rare source of information. The red dashed line indicates the length-of-day model used in the nominal
La2004 solution of Laskar et al. (2004), which assumes present-day tidal dissipation and dynamical ellipticity. Table 4.2 lists obliquity and precession peri-
odicities for key geological times.

75Chapter | 4 Cyclostratigraphy and Astrochronology
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seen around the autumnal and vernal equinoxes, when the Sun is over
the equator.

The Reynella Siltstone rhythmites from within the Elatina
Formation contained 14–15 diurnal laminae in each neap-spring
cycle. This compares well to the Elatina rhythmites, where pairs of
neap-spring cycles contained a maximum of 29 diurnal laminae. Thus,
each record was interpreted to possess 29–30 lunar days per synodic
month, which implies approximately 30–31 solar days per synodic
month (Archer et al. (1991) note that care must be taken when
employing the maximum number of events, as employing this
method in modern systems can yield days-per-year values that
exceed 460 in some cases). The 26.2 neap-spring cycles per year found
in the Elatina record indicate approximately 13.1 synodic months per
year at the time of the tidalite formation. Therefore, Williams
calculated (30.0±0.5)⁎(13.1±0.1)=400±7 solar days per year
and a length of day of 21.9±0.4 h at ~620 Ma.

One of the primary objectives of studies such as this is to surmise
the early dynamics of the Earth–Moon system. The construction of a
lunar recession curve is yet to be realized, although partial results are
available (Fig. 11). The manner of lunar recession through time also
influences ideas regarding the formation and subsequent early states
of the Moon. However, “uncertainties in the available Paleoproter-
ozoic paleotidal values are too great to permit a reasonable estimate of
the Earth–Moon distance at 4.5 Ga” (Williams, 2000, p.56).

With the neap-spring period (and, thus, duration of the sidereal
month) given by tidal rhythmites, calculation of the past Earth–Moon
distance is possible. The most common method, first employed by
Deubner (1990), utilizes Kepler's third law:

ðT =ToÞ
2 = ða=aoÞ

3
;

where T and To are the past and present values of the sidereal month
and a and ao are the past and present Earth–Moon distances (along
the semi-major axis). Two less commonly used methods were
presented by Williams. These methods are dependent on approxima-
tions of ancient lunar nodal periods, inclination of the lunar orbital
plane, and changes in angular momentum of the Earth's rotation and
the Moon's orbit. The first employs the equation for the period of
precession of the lunar orbit

P = Poðcos io = cos iÞða=aoÞ
1:5

;

where P and Po are the ancient and modern lunar nodal periods, i and
io are the past and present inclinations of the lunar orbital plane to the

elliptic plane, and a and ao are the past and present lunar semi-major
axes. The second less frequently used method uses the expression for
change in lunar orbital angular momentum:

1:219−ðω =ωo4:93Þ = ða=aoÞ
1=2 + ð0:46Þ2 = 13ða=aoÞ

13=2
;

where ω and ωo are the past and present rotation rates of the Earth
(Deubner, 1990). All three techniques, employing different values
from the data sets yielded very similar values (ranging from 0.965±
0.005 to 0.969±0.017 Earth radii). Given this data for the ancient
lunar semi-major axis, a mean rate of 2.17±0.31 cm/yr is calculated
for the last 620 million years.

It is important to note that the sidereal period obtained from the
rhythmite record is generally given in lunar days (a depositional event
occurs once or twice in a lunar day). The length of the day, however,
has changed considerably through geologic time as the Earth's
rotation has slowed, and is an inconsistent temporal unit. Caution
should be exercised when periods given in terms of “days” or other
units with inconsistent temporal reference frames are used in
calculating ancient parameters. To make the conversion from a period
expressed in units dependent on Earth's rotation to a period given in a
timeframe independent of tidal dissipation effects, it is necessary to
make assumptions regarding both the angular momentum of the
Earth–Moon system rotation and Earth's moment of inertia when
using sub-yearly data (Coughenour and Lacovara, 2005). Multi-year
records, such as those provided by the Elatina and Reynella
rhythmites, may provide the data necessary to falsify or further
justify these hypotheses (see Section 2.6).

The banded iron deposits of the Weeli Wolli Formation, dating to
2.5 Ga from Western Australia, have proven difficult to interpret and
are instructional in revealing the potential pitfalls of tidal rhythmite
analysis (see discussion in Williams, 2000). Laminae couplets were
originally interpreted as each representing one year (Trendall, 1973;
Walker and Zahnle, 1986). From this interpretation, a mean
periodicity of approximately 23 couplets (years) per cycle was
estimated. Although the absence of an 11 year cycle excluded a
22 year Sunspot cycle, Walker and Zahnle believed the laminae
preserved what is now the 18.6 year nodal cycle (this is the variation
of the Moon's orbital plane about the ecliptic, or plane of the Sun's
orbit about the Earth). This cycle does appear in certain modern
climate records, such as temperature and rainfall data from Western
North America and tree ring data from Patagonia, and is also observed
in modern tidal height data. The lunar nodal cycle has been
qualitatively noted to affect sedimentation patterns (Oost et al.,
1993). Calculation of the Earth–Moon distance for P=23.3 years,
yielded a /ao=0.86±0.1 at 2450 Myrs BP. These results, interesting-
ly, are similar to the results produced when the couplets are
interpreted as each representing a neap-spring cycle, and a periodicity
of 28 to 30 laminae per cycle is estimated (Williams, 2000).

The current high rate of recession is nearly twice the average for the
past 620 Myr. By looking backward in time, only the 1.47±0.46 cm/yr
scenario, suggesting that the Moon has never made a close approach to
Earth, seems to be in agreement with evidence suggesting lunar
formation well before 3.2 Ga. From his analyses, Williams (2000)
surmised that there has been little change in the Earth's moment of
inertia since the late Neoproterozoic (620 Ma), consistent with the
analysis of Runcorn (Runcorn, 1964) and the model assumptions used
by Hansen (1982).

Data from the Precambrian Australian rhythmites were somewhat
unique, in that they represented multi-year tidal records. Frequently,
rhythmite sections are found representing only months or weeks of
deposition. Furthermore, many rhythmites contain discontinuities
due to erosion, bioturbation, or other factors previously discussed.
Thus, when complete rhythmites are found, extraction of tidal
periodicities from sub-yearly sets is paramount. Analysis of a
5.5 month-long continuum of Carboniferous tidalites from the Brazil

Fig. 11. Several possible scenarios of lunar recession as interpolated from Precambrian
tidal rhythmite data. Curve a is the predicted history of recession assuming the present
rate of dissipation. Curve b is the predicted recession the mean rate of dissipation from
the past 500 Myrs as inferred from paleontological growth ring data. Curve c employs
the rate of recession calculated from the Elatina rhythmites. Curve d is based on the
Elatina and tentative interpretation of the Weeli Wolli rhythmites and shows the Moon
well outside the Roche limit for the whole of Earth's history (from Williams, 2000).
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Tides have been a source of inquiry since the dawn of human civilization. It has been known for millennia
that the Moon is a causative agent in the formation of tides, with the observation that lunar phases often
correlated to changing tidal amplitudes. The precise mechanisms underlying the formation of tides and local
tidal dynamics, however, have proven difficult to elucidate. Only with Newton's theory of gravitation in the
17th century was the correlation between lunar cycles and tides partially explained. Further work by Laplace
and others resulted in a more dynamic theory that more closely matched observations and allowed for better
prediction of local tidal behavior. Quantitative models derived from these methods have increased in
precision and complexity (particularly with the advent of the electronic computer), and have allowed new
insights into the nature of tidal dynamics and tidal dissipation.
In more recent years scientists have analyzed deposits known as tidal bundles and tidal rhythmites in an
attempt to extrapolate the history of tides from the geologic record. Tidal bundles are laterally accreted cyclic
foreset beds separated by mud laminae. Tidal rhythmites are vertically accreted planar laminae that alternate
between coarse and fine sediments forming couplets often composed of sands and muds. These deposits are
characterized by bed/laminae thicknesses that vary rhythmically and preserve tidal periodicities, and are
generally found in intertidal or subtidal depositional environments. The mode of deposition (e.g. sand or
mud) is primarily determined by current velocity and tidal range, factors largely controlled by the tides in
marginal marine settings.
Quantitative analyses of tidal rhythmites may facilitate more precise elucidation of tidal periodicities
encoded in the rock record. The partial reconstruction of the history of lunar recession from existing data and
analyses indicates that the Earth is presently experiencing a high rate of tidal dissipation. Further data
obtained from ancient tidal proxies may prove essential in constraining models of tidal dissipation, thereby
revealing the mechanisms and dynamics present in the dissipation process controlling secular changes in the
length of day and lunar orbit.

© 2009 Elsevier B.V. All rights reserved.
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986 O. Néron de Surgy & J. Laskar: On the long term evolution of the spin of the Earth

Fig. 5. Probability P for the maximum obliquity ✏max to exceed a given
value ✏ for the Earth with �t = 600s. This was performed over 500
orbits with very close initial conditions followed over 5 Gyr.

tial phases  separated by 10�9 rad and 50 initial obliquities
separated by 10�8 degree.

Thus we have performed a frequency analysis (see Laskar,
1993) on the precession frequency and also plotted the minimum
and maximum reached obliquity each 10.26 Myr. The whole
computation, for such an experiment, took about 13 days on a
IBM-RS6000/390.

It is quite obvious that we cannot display all the various
solutions, and we just selected two examples of the possible
evolution of the Earth (Fig.4a-b) which are representative of
the whole experiment. The two curves plotted in Figs. 4a and
4b have initial obliquities differing by 36 µas. We see that the
obliquity enters the chaotic region at about +1.5 Gyr and that
it can go from 0� to values close to 90� as was the case in the
conservative framework. When superimposed on Fig. 1, those
graphs show possible paths of the evolving obliquity through
the different zones of the global dynamics.

The computed speed of rotation of the Earth after 5 Gyr
is about 0.42 !in. Provided that ⇢c ' 10 kg m�3 (Hinderer et
al., 1990) and that  ̇(5Gyr) <  ̇in, one can easily check that
condition (C) of Sect. 3 has not been violated.

The 500 different paths obtained in this manner allow us
to get a fairly good idea of the probability for the obliquity to
attain some given threshold once the chaotic zone entered. For
instance, we have found that 342 maximum obliquities have
exceeded 81� at least once, hence a probability P(✏ > 81�) =
68.4% (see Fig. 5).

6.2. some alternatives

•�t = 600 seconds is close to the present measured value of the
dissipation coefficient, and is in agreement with the observations
at�500 Myr (Fig. 3a), but this leads to a lunar collision at about
1.2 Gyr in the past. For this reason, we also considered for �t
the smaller value of 200 seconds which is close to the lowest
value compatible with these geological observations (Fig. 3a).
As previously, for �t = 200 seconds, we followed the evolution
of 500 obliquities. As the dissipation is three times weaker, the
Earth reaches the chaotic zone on a much longer time, after about
4.5 Gyr, and after 5 Gyr it has spent only about 500 Myr in this
chaotic zone; the probability of reaching a given high value of
obliquity is then lower than in the previous case of �t = 600
seconds for which the same situation lasted 3.5 Gyr (see Fig.
6), and we have P(✏ > 81�) = 36.6%, which nevertheless is
not a small value. If we continue the integrations over 6 Gyr,
which is still a possible future lifetime for the Earth, we obtain
for P(✏ > 81�) the much higher value of 60.4% (Fig. 6). We
carried on the computation till 8 Gyr in order to look at the
evolution of this probability, and we also plotted in Fig. 6 the
corresponding curves for 7 and 8 Gyr. Then, the set of the four
curves shows that the longer the Earth remains in the chaotic
zone, the higher are the probabilities for the maximum obliquity
to reach any value (the possible maximum hardly exceeding 90�

after 8 Gyr).

We can thus conclude that for any value of the tidal dis-
sipation compatible with the geological observations depicted
in Fig. 3a, a very large obliquity in the future of the Earth is a
highly probable event.

Finally, we notice that all curves present a falldown at about
70� and a step till a second falldown to 0 close to 90�. This can be
understood by the fact that, as is shown in Laskar et al.(1993b),
the chaotic zone is divided into two regions of strong overlap
of secular resonances. In each of these regions, the diffusion of
the orbits is rapid, but the connection between these two boxes
is more difficult. As soon as a given orbit enters the second box,
related to high values of the obliquity, it will rapidly describe
it entirely, so we observe in this case a jump in the maximum
value reached by the obliquity.

• One would like to consider some very larger coefficients
�t or ⌫ in order to accelerate the effect of the dissipation and
to shorten a lot the time of integration by the way. For example,
Touma and Wisdom (1994) set a tidal effect about 4000 times
stronger than the present value in their study of the past evolution
of the Earth’s obliquity. We have integrated the system with three
different values: �t = 3⇥ 104, 3⇥ 105, and 3⇥ 106 seconds,
the last one roughly corresponding to what Touma and Wisdom
took. The equivalent despinning of the Earth is then respectively
achieved after 100 Myr, 10 Myr and 1 Myr instead of 5 Gyr.

The results clearly show that the dynamics are altered as
much as the time scale of braking is reduced (see Figs. 7a-c). In
the first case, we have found P(✏ > 81�) = 1.2%. In the second
one, the obliquity remains confined below 47.3�. Finally, secular
resonances have a faint effect in the last case, the obliquity never

(Néron de Surgy & Laskar, A&A, 1997) 
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Mercury Venus Earth Mars

Obliquity
(deg)
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Rot. Period
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La rotation de VénusThe rotation of Venus
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With planetary perturbations
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The 3/2 spin-orbit resonance of Mercury
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Rotation Period : 58.6 d
Orbital  Period   : 87.97d

Radar observations:
Pettengill & Dyce, 1965

Peale & Gold, 1965
Goldreich, 1965
Colombo, 1965
Liu & O'Keefe, 1965
Goldreich & Peale, 1966
Counselman & Shapiro, 1970

3/2 resonance
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Kepler near-resonant planets

Jean-Baptiste DELISLE (Paris - France) Dissipation in resonance 13 February 2013 2 / 11

Significant excess of planet pairs just exterior to MMR

Lissauer et al. (2011), Fabrycky et al. (2012)

Fabrycky et al. (2012)

Possibly due to dissipation (tidal effect, disk-planet interactions)

Papaloizou & Terquem (2010),
Lithwick & Wu (2012), Batygin & Morbidelli (2013),

Baruteau & Papaloizou (2013)
Delisle, Laskar, Correia, Boué,  (2012), Lee, Fabrycky, Lin (2013)
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•Resonant averaged Hamiltonian  (p+q:p) (lower deg)
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Tuesday 18 November 14



Dissipative case: simulation

Jean-Baptiste DELISLE (Paris - France) Dissipation in resonance 13 February 2013 8 / 11

Convergent migration (gray dots)

Locking into 3 : 2 MMR

Tidal damping (black dots)

Dissipative case: simulation

Jean-Baptiste DELISLE (Paris - France) Dissipation in resonance 13 February 2013 8 / 11

Convergent migration (gray dots)

Locking into 3 : 2 MMR

Tidal damping (black dots)
Conservative case: phase space
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•Resonant averaged Hamiltonian  (p+q:p) (lower deg)

H = K(D) + Sq(Ii,�$) +
qX
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deg ≥ 2 deg = q

Kepler secular resonant

Higher order MMR (p+q:p)  q > 1

Tuesday 18 November 14



Higher order MMR (p+q:p)  q > 1
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q�k
2 )

D = D1 +D2 = u1ū1 + u2ū2

l Search for the center of libration :

D1

D2

Delisle, Laskar, Correia, 2014

p
I2

p
I1�

Tuesday 18 November 14



Separatrix crossing. Final outcome

⌧c ⇡ L

 
e1

e2
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4 + (p+ q)(1 + L)

4L� p(1 + L)
L ⇡ m1

m2
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p+ q

◆1/3⌧ =
T1

T2

⌧ > ⌧c

⌧ < ⌧c

l libration amplitude decreases 
★ q=1 : Diverging
★ q>1 : Stays in resonance

l libration amplitude increases 
l separatrix crossing is possible

★               Diverging  
★               Converging
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Dissipative case: simulation
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ABSTRACT

The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just
wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could
have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small,
because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider
a widely held scenario in which pairs of planets were captured into first-order resonances by migration due to
planet–disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the
planets. In the context of this scenario, we find a constraint on the ratio of the planet’s tidal dissipation function and
Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough
to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are
at play.

Key words: celestial mechanics – planetary systems – planets and satellites: general

1. INTRODUCTION

The Kepler space telescope is designed to detect the periodic
transits of exoplanets in front of their host stars. Based on the
data obtained during the first 16 months of Kepler’s operation,
more than 2000 planetary candidates have been identified,
analyzed, and published (Batalha et al. 2013). Most of these
planetary candidates have radii in the range one to four times that
of the Earth (R⊕) and orbital periods P less than a few months.
The rarity of planets with smaller radii and longer periods is due
to observational selection effects. Although a large fraction of
these candidates may indeed be planets, some of them may be
due to the blending of background eclipsing binary stars with
the light of foreground stars.

In the 16 month Kepler catalog,6 there are 361 host stars
which bear 2 or more transiting planetary candidates (Fabrycky
et al. 2012), and almost all of them are real multiple-planet
systems (Lissauer et al. 2012). Their orbital configurations
contain valuable information on the history of their formation
and dynamical evolution. In particular, although a majority of
the planet pairs are not in or near mean-motion resonances, there
is an excess of planet pairs with outer-to-inner orbital period
ratios, P2/P1, just wide of first-order 2:1 and 3:2 resonances
and a deficit of pairs with P2/P1 just smaller than 2:1 and 3:2
(Lissauer et al. 2011; Fabrycky et al. 2012). The excess and
deficit occur within a few percent of exact commensurabilities.
Figure 1 shows the histogram of period ratio for all Kepler
candidate pairs, pairs with radius of the inner planet R1 < 2 R⊕
(Earths and super-Earths), and pairs with R1 > 2 R⊕ (Neptunes
and above). Both pairs with R1 < 2 R⊕, and pairs with
R1 > 2 R⊕ show an excess for P2/P1 just larger than 3:2 and
a deficit just smaller than 2:1, but interestingly, there is not an

5 Hubble Fellow.
6 We did not use the 2 yr catalog of Burke et al. (2013), which is available at
http://exoplanetarchive.ipac.caltech.edu/, in this paper, as the 2 yr catalog was
still changing, with evolving biases and completeness, when we completed this
work.

obvious excess just larger than 2:1 for pairs with R1 < 2 R⊕
(although the statistics is noisy due to small numbers). Also,
the lack of pairs with P2/P1 just smaller than 3:2 reported
by Fabrycky et al. (2012) is not notable in Figure 1, because
the bin size (0.05) is large compared to the width of the gap
(0.01–0.02).7

The Kepler candidates should be contrasted with the radial
velocity sample, which also shows an excess of planet pairs
near the 2:1 resonance. The radial-velocity planets are mostly
Jupiter-mass planets, and the excess near the 2:1 resonance
consists of confirmed (or likely) resonant pairs such as GJ 876
(Laughlin & Chambers 2001; Rivera & Lissauer 2001; Laughlin
et al. 2005) and HD 82943 (Lee et al. 2006; Tan et al.
2013). A widely accepted hypothesis for the origin of such
resonances is resonance capture through convergent migration
of the planets (Bryden et al. 2000; Kley 2000; Lee & Peale
2002). Tidal interaction between an embedded planet and its
natal protoplanetary disk generally leads to a torque imbalance
(Goldreich & Tremaine 1980). Jupiter-mass planets are able
to open gaps in the disks, and they generally evolve with the
viscous diffusion of their natal disks and undergo inward type II
migration (except in the outermost regions of the disk where the
disk spreads viscously outward and the migration is outward;
Lin & Papaloizou 1986). Convergent migration occurs if the
inward migration of the outer planet proceeds faster than that
of the inner planet and the outer-to-inner period ratio, P2/P1,
decreases.

Lower-mass planets, like most of the Kepler candidates, do
not significantly perturb the disk surface density distribution,
and thus they undergo type I migration. The direction of type I
migration is expected to be inward in the classic theory of, e.g.,

7 Fabrycky et al. (2012) have found that the distribution of period ratios
around second-order resonances is consistent with a random distribution. The
excess of pairs with R1 < 2 R⊕ (as well as all pairs) for the bin in Figure 1
centered at P2/P1 = 1.725, which is just wide of the second-order 5:3
resonance, is likely an artifact, as there are no longer obvious features around
5:3 when we shift the bins by, e.g., 0.02 in P2/P1.

1
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Fig. 3. Cumulative distributions of planet pairs in the vicinity of the 2:1
and 3:2 mean-motion resonances (the statistics of both resonances are
accumulated) for the three groups defined in Fig. 2 (see also Sect. 2)
The conclusions are the same as in Fig. 2: for farthest systems (blue)
there is a pile-up of planets in the resonance, while for close-in systems
(red) the pile-up is shifted toward higher values of the period ratio and
we observe a lack of resonant systems. The distribution of intermedi-
ate systems (green) is, not surprisingly, intermediate. Using K-S tests
to compare these distributions, we obtain a p-value of 0.08% for both
extreme distributions (red and blue). The p-value for the blue and green
distributions is 10%, and for the green and red ones 3.5%.

by the K-S test are respectively 3.5% (groups 1 and 2) and 10%
(groups 2 and 3).

Therefore, we conclude that the distance to the star does have
a statistically significant impact on the distribution of period ra-
tio of planet pairs. Very close-in systems (P1 < 5d) are not
found in resonance and are very often found in external circu-
lation, whereas for the farthest systems (P1 � 15d), both popu-
lations (resonance and external circulation) are equivalent with
a slight excess of systems inside the resonance. These obser-
vations are well explained by the tidal dissipation scenario of
formation of Kepler near-resonant planets. On the contrary, the
other proposed mechanisms do not predict this dependency on
the distance to the star.

3. Conclusion

In this letter, we show that the distribution of period ratio among
pairs of planets depends on the distance of the planets to the
star. For close-in systems there is not any detected planet pairs
in first-order mean-motion resonances (2:1, 3:2), and there is an
excess of planets in external circulation, i.e. close to the res-
onance but with a period ratio higher than the resonant value.
For the farthest systems, the number of resonant pairs is slightly
greater than the number of planets in external circulation. Us-
ing a K-S test to compare both distributions, we obtain a p-value
of 0.08% and conclude that the di↵erences we observe are sta-
tistically significant. Some observational biases might contam-
inate the datasets, however it seems very unlikely that the dif-
ferences we observe between close-in and farther systems arise
from such biases. Tidal dissipation raised by the star on the plan-
ets naturally explains these observations because this e↵ect has
an important dependency on the distance to the star and is much
stronger for close-in systems. Moreover, it is the only proposed
mechanism of formation of these near-resonant systems that pre-
dicts such a strong dependency.

These observations together with the new scenario of forma-
tion we proposed recently (still involving the tidal dissipation but
with a faster evolution of the period ratio, see Delisle et al. 2014,
section 5) favor a large influence of tidal dissipation at the origin
of the excess of planets in external circulation in the Kepler data.
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