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An example: the Mars-Phobos system 
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1. Introduction and context

2. Forced waves in stars and fluid planetary layers

2.1. The studied set-up

In Ogilvie & Lin (2004), the authors develop a model for inertial
waves that describes the behavior of a fluid box submitted to
tidal perturbations. It yields an analytical expression for viscous
dissipation depending on the fluid properties through the Ekman
number especially. Our model is directly inspired from this one.
Indeed, we consider a local fluid section belonging to a planet
tidally perturbed at a frequency �. The section is a cartesian
fluid box of length L, such as L ⌧ R, where R is the distance
between the box and the planet center. The fluid is newtonian,
of density ⇢ and kinematic viscosity ⌫, like in the article. But we
take into account its thermal di↵usivity  and its stratification
through the buoyancy B and the Brunt-Vaisala frequency N too.
Moreover, the box is inclined relatively to the spin axis of the
body with an angle ✓. Its rotating movement around this axis is
described by the spin vector ⌦ assumed constant.

Fig. 1. Inertial and gravito-inertial waves spectra (figure taken from
MNTM2013).

We use two reference frames ?. The global one RA :
{A,X,Y,Z} rotates with the planet and its natural spherical as-
sociated basis is denoted (

er, e✓, ez). Thus, the box is located at
the spherical coordinates (R, ✓, 0) in this frame. Then, we intro-

duce the frame fixed to the fluid section, R :
n

O, ex, ey, ey
o

whose
vectors are such as : ez = er, ey = �e✓ and ex = e'.

Fig. 2. The fluid box, its reference frame and its position in the planet
relatively to the spin axis.

To assume that the fluid is stably stratified (i.e. non convec-
tive) by gravity allows us to study at the same time inertial waves
and gravito-inertial waves. Inertial waves result from Coriolis
acceleration only, while gravito-inertial waves involve the buoy-
ancy in addition to Coriolis acceleration. These last ones are
characterized by the Brunt-Vaisala frequency N defined as fol-
lows :

N2 = �g
"

d log ⇢
dz

� 1
�

d log P
dz

#

, (1)
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘
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⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).
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(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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number of noticeable resonance peaks. Then, as shown by Table
1 for first modes, Nkc < k2

c . The layer of harmonics k brings pk
new peaks:

pk = 2k � 1 �
X

i|k/ki2N⇤
ki primenumber

pi (41)

Thus, the number of peaks can be computed with the follow-
ing recurrence series:

Nkc =

kc
X

k=1

pk (42)

kc 1 2 3 4 5 6 7 8 9 10
k2

c 1 4 9 16 25 36 49 64 81 100
Nkc 1 3 7 11 19 23 35 43 55 65

Table 1. Numerical comparison between the number of peaks Nkc and
the number of modes k2

c , kc being the rank of the higher harmonics, for
the main resonances (1  k  10).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  2  4  6  8  10

N
um

be
r o

f r
es

on
an

ce
s

kc

Nkc
kc

2

Fig. 14. The real number of resonances Nkc and its first order approx-
imation k2

c in function of the rank of the highest harmonics kc for the
main resonances (1  k  10).

3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:

Dmn

 

!mn +
lmn

2

!

=
1
2

Dmn (!mn) , (43)

i.e.

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (44)
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Fig. 15. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by viscous di↵usion (E = 10�4 and
K = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).
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Fig. 16. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by thermal di↵usion (K = 10�4 and
E = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)
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3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:
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This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)

Article number, page 7 of 13

Auclair-Desrotour, Mathis, Le Poncin-Lafitte: Understanding tidal dissipation in stars and fluid planetary regions

A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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to the quality factor Q used to take into account dissipation
in orbital dynamics (see Efroimsky & Lainey 2007). Thus,
it linearly impacts the evolution of orbital parameters such
as the semi-major axis, denoted a, of a two-body coplanar
system. To a certain extent, the variation of a caused by a
resonance is proportional to the width of this later. In the
following part, we compute an analytical formula of it show-
ing the dependence on the parameters of the fluid box: the
frequencies square ratio A, the Ekman number E and the
dimensionless thermal di↵usivity K. Similarly to the eigenfre-
quencies, the widths at mid-height lmn of peaks are fully deter-
mined by the left-hand side of Eq. 5. We suppose that ⇠mn, the
numerator of ⇣mn in Eq. 29, varies smoothly compared to its de-
nominator dmn (Eq. 30). Then, the width at mid-height is defined
by the relation:

⇣mn

 

!mn +
lmn

2

!

=
1
2
⇣mn (!mn) , (49)

that can also be expressed:

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (50)

This means that we solve the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (51)

In the regime where E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (52)

Looking at the form of this expression, we introduce two critical
numbers proper to the mode (m, n),

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (53)

which determine asymptotical behaviors. A ⌧ Amn characterises
inertial waves and A � Amn gravito-inertial waves. In the same
way, if Pr ⌧ Prmn, the resonance is dominated by thermal dif-
fusion ; if Pr � Prmn, it is dominated by viscosity. It allows to
identify four distinct regimes, resumed in Fig. 8:

1. A ⌧ Amn and Pr � Prmn, inertial waves dominated by
viscosity;

2. A � Amn and Pr � Prmn, gravito-inertial waves dominated
by viscosity;

3. A ⌧ Amn and Pr ⌧ Prmn, inertial waves dominated by
thermal di↵usion;

4. A � Amn and Pr ⌧ Prmn, gravito-inertial waves dominated
by thermal di↵usion;

Fig. 8. Asymptotical domains. The areas at left (light blue and purple)
correspond to inertial waves, the ones at right (red and green) corre-
spond to gravito-inertial waves. The fluid is dominated by viscosity in
the blue and red areas, it is dominated by thermal di↵usivity in the green
and purple ones.

The formulae of Table 2, deduced from Eq. 52, eloquently
illustrate this point. First, focus on inertial waves. If the
viscous term overpowers the term of heat di↵usion, then we
are in the case studied by Ogilvie & Lin (2004). The width
at mid-height of resonances linearly varies with the Ekman
number. For E = 10�2, peaks are larger than for E = 10�5

(see Fig.3). Else, the width is proportional to K: for a given
A > 0, the resonances would widen with K as they do with
E in the previous case. Now, let us look at gravito-inertial
waves. They behave similarly as inertial waves, linearly
widening with E and K in the regimes defined above. Finally,
note that lmn always depends on only one parameter but in
the case of inertial waves dominated by thermal di↵usion,
for which the square frequencies ratio has also a linear
impact.

Domain A ⌧ Amn A � Amn

Pr � Prmn 2E
⇣

m2 + n2
⌘

E
⇣

m2 + n2
⌘

Pr ⌧ Prmn AK
m2

⇣

m2 + n2
⌘

n2 cos2 ✓
K

⇣

m2 + n2
⌘

Table 2. Asymptotical behaviors of the width at mid-height lmn of the
resonance associated to the doublet (m, n).

Considering the resonances have all the same qualitative be-
havior, we concentrate on the main one, m = n = 1. The plot
of its width l11 after Eq. 52 allows to visualize the tendencies
described before (Fig. 9). In particular, we can notice the
critical zones where regimes change. As regards the critical
Prandlt Pr11 for instance, it is indicated by corners. The case
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inertial waves 
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Domain A ⌧ A11 A � A11

Pr � Pr11

!mn ⇠
np

m2 + n2
cos ✓ !mn ⇠

mp
m2 + n2

p
A

lmn ⇠ E kc ⇠ E�1/4 lmn ⇠ E kc ⇠ A1/8E�1/4

Hmn ⇠ F2E�1 Nkc ⇠ E�1/2 Hmn ⇠ F2E�1 Nkc ⇠ A1/4E�1/2

Hbg ⇠ F2E ⌅ ⇠ E�2 Hbg ⇠ F2EA�1 ⌅ ⇠ AE�2

Pr ⌧ Pr11

!mn ⇠
np

m2 + n2
cos ✓ !mn ⇠

mp
m2 + n2

p
A

lmn ⇠ AK kc ⇠ A�1/4K�1/4 lmn ⇠ K kc ⇠ A1/8K�1/4

Hmn ⇠ F2A�2EK�2 Nkc ⇠ A�1/2K�1/2 Hmn ⇠ F2EK�2 Nkc ⇠ A1/4K�1/2

Hbg ⇠ F2E ⌅ ⇠ A�2K�2 Hbg ⇠ F2EA�1 ⌅ ⇠ AK�2

Table 8. Scaling laws of the properties of the energy dissipated for the di↵erent regimes. Top left: Inertial waves dominated by viscosity. Top
right: Gravito-inertial waves dominated by viscosity. Bottom left: Inertial waves dominated by heat di↵usion. Bottom right: Gravito-inertial
waves dominated by heat di↵usion.
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Table 8. Scaling laws of the properties of the energy dissipated for the di↵erent regimes. Top left: Inertial waves dominated by viscosity. Top
right: Gravito-inertial waves dominated by viscosity. Bottom left: Inertial waves dominated by heat di↵usion. Bottom right: Gravito-inertial
waves dominated by heat di↵usion.
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Turbulent friction in rotating convection zone 

Slow tide 
Q α ω-1 

Fast tide 
Q=cste 

Viscous turbulent by 
non-rotating convection 

Viscous turbulent by 
rotating convection 

Zahn 1966 
 

Remus, Mathis & Zahn 2012 
Mathis et al. 2014-15  (Barker 2014) 



Host star (M in M¤) Planets 

Their strong stratification 
à Need of a global ab-initio physical modeling 

 

Towards global and multi-layer models 

21 



Remus, Mathis,  
Zahn & Lainey 

2012, 2014 
Ogilvie 2009, 2013 

à  Integrated models needed for gaseous giant (and telluric) planets 
 

à  Possibility of frequency-averaged grids as a function of stellar and planetary properties 
  

Guenel, Mathis & Remus 2014  
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Saturn:  
Mc/Mp=0.196 

Frequency-averaged models 
The example of a Saturn-like planet: 
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Global models 

Tidal inertial waves in differentially rotating convective regions 
 

Baruteau & Rieutord 2013; Guenel et al. 2015 

Schou et al. 1998; 
Garcia et al. 2007 



Understanding stars with companions 

-   Tides impact angular momentum 
exchanges within/between stars and 
planets  
à modification of the host star’s 
evolution and internal differential 
rotation 

-  Tides induce helical flows  
à able to modify magnetism in stars (BinaMIcS, 
Uvmag/Arago) and planets (magnetic fields also 
modify tidal flows) 
-   Tidal and MHD torques must be taken into 
account simultaneously to predict the correct 
evolution of a system  
 

Dona%	  et	  al.	  2008;	  Strugarek	  et	  al	  2014	  

Tides and stellar evolution Tides and magnetism 

Barker	  &	  Ogilvie	  2010	  
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•  Dependence of the spin/orbital dynamics on the resonant tidal fluid 
dissipation : 
à width, height, non-resonant background level 

•  Dependence of the characteristics of these resonances on the physical 
parameters of the fluid :  
à  rotation, stratification, viscosity, thermal diffusivity, etc. 

•  Local model : general method and qualitative results 
à Need of global models (Guenel, Baruteau, Mathis & Rieutord; Ogilvie et 
al.); need to characterize the case of stratified convection (Leconte & 
Chabrier) 

•  Generalization to magnetic stars and planets : 
à Alfvén waves; new asymptotic behaviors (Mathis, Auclair-Desrotour, 

Guenel, Le Poncin-Lafitte) 
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Spin/orbit Tidal dissipation Internal structure 

Conclusions & perspectives 
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