RADIO DIAGNOSTIC OF STAR-PLANET PLASMA INTERACTIONS

Philippe Zarka

LESIA, Observatoire de Paris, CNRS, UPMC Paris 6, UPD Paris 7

philippe.zarka@obspm.fr

EXOPLANETS IN RADIO

Magnetized planets are strong radio sources (Jupiter ~ Sun)

 Exoplanets in Radio ⇒ physical characterization & comparative studies with solar system planets

EXPERIENCE FROM SOLAR SYSTEM PLANETS + THEORY

- 6 magnetized planets (M,E,J,S,U,N) with planetary-scale B field
 - → magnetospheres, accelerating keV-MeV electrons
 - → high-latitude (auroral) radio emissions
 - → radio sources studied remotely & in situ

[Zarka, 1998]

[Huff et al., 1988; Treumann & Pottelette, 2002]

EXPERIENCE FROM SOLAR SYSTEM PLANETS + THEORY

- Coherent cyclotron (Maser) radiation from keV electrons
 - \rightarrow frequency \leq a few 10's MHz (f_{ce} \propto |B|)
 - \rightarrow intense (T_B~10¹⁵⁻²⁰ K)
 - → sporadic (msec-hour)
 - → anisotropic
 - → circularly polarized

$$\omega = \omega_c/\Gamma - k_{\parallel}v_{\parallel}$$

$$\gamma = \frac{\omega_p^2 c^2}{8\omega_c} \int_0^{2\pi} v_\perp^2(\theta) \nabla_{v_\perp} f(\mathbf{v}_0, \mathbf{R}(\theta)) d\theta \text{ with } \omega > \omega_c$$

loss-cone r.c. 0.00 0.15 > 0.07 0.00 thermal -0.150.00 0.11 C 0.15 >[→] 0.07 0.00 0.00 -0.150.11 0.15

shell r.c.

[Wu, 1985; Treumann, 2006; Hess et al., 2008]

[Girard et al., 2012]

EXPERIENCE FROM SOLAR SYSTEM PLANETS + THEORY

- Energy (keV electron acceleration) drivers
 - → Stellar Wind-Magnetosphere interaction (super-Alfvénic, compression, reconnection)
 - → Magnetosphere-Ionosphere coupling
 - → Magnetosphere-Satellite coupling (sub-Alfvénic, reconnection, unipolar inductor)
 - → Star-Planet Interaction

(" " ")

[Zarka et al., 2001; Zarka, 2007; Nichols, 2011]

→ Stellar Wind-Magnetosphere interaction

Poynting flux of B_{IMF} on obstacle:

$$P_m = B_{\perp}^2/\mu_o V \pi R_{obs}^2$$

Dissipated power:

(c)

$$P_{d} = \varepsilon P_{m} \qquad (\varepsilon = 0.1 - 0.2)$$

→ Magnetosphere-Satellite interaction (unipolar inductor)

Dissipated power:

$$P_{d} = \epsilon VB_{\perp}^{2}/\mu_{o} \pi R_{obs}^{2} = \epsilon P_{m}$$

$$(\epsilon \sim M_{A} = 0.1 - 0.2)$$

Chromospheric hot spot on HD179949 & u And?

[Shkolnik et al., 2005, 2008]

[Preusse et al., 2006]

→ Magnetosphere-Satellite interaction (reconnection)

Dissipated power:

$$P_d = \epsilon k V B_{\perp}^2 / \mu_o \pi R_{obs}^2 = \epsilon k P_m$$

(k = cos⁴(θ /2) = 1; ϵ = 0.1 - 0.2)

≈ Interacting magnetic binaries or starplanet systems

PREDICTIONS FOR EXOPLANETS

- Jupiter detectable to <0.2 pc on the Galactic background
- Scaling laws & extrapolations :
 - → SW-M : LF radio output vs kinetic/CME/magnetic power inputs, up to 10³⁻⁵ x Jupiter's
 - → SPI : LF/HF radio output vs Poynting flux input, up to 10⁶ x Jupiter's

Magnetic field decay for hot Jupiters ?

- Spin-orbit synchronisation (tidal forces) $\Rightarrow \omega \downarrow$ but $M \propto \omega^{\alpha}$ with $1/2 \leq \alpha \leq 1 \Rightarrow M \downarrow$ (B decay) ?
- Internal structure + convection models
 - ⇒ self-sustained dynamo ⇒ M could remain ≥ a few G.R_J³

UPPER LIMIT OF MAGNETIC FIELDS IN HOT JUPITERS

Planet	M $(M_{\rm J})$	P _{orb} (days)	R $(R_{\rm J})$	M_D (G m ³)	<i>B</i> _s (G)
HD 179949b ^a HD 209458b τ Boo b ^a OGLE-TR-56b	0.69 3.87	3.093 3.52 3.31 1.2	1.3 1.43 1.3 1.3	1.1×10^{24} 0.8×10^{24} 1.6×10^{24} 2.2×10^{24}	1.4 0.8 2 2.8

[Sanchez-Lavega, 2004]

Planet name	Planet mass a		d^1	\dot{M}	Age	$B_{ m dip}^{ m pol}$
	$[M_{\text{Jup}} \sin i]$	[AU]	[pc]	$[\dot{M}_{\odot}]$	[Gyr]	[G]
Jupiter	1.00	5.20		1.0	4.5	9
eps Eridani b	1.55	3.39	3.2	25.9	1.7	19
Gliese 876 b	1.93	0.21	4.7	0.1	2.4	23
Gliese 876 c	0.56	0.13	4.7	0.1	2.4	6
GJ 832 b	0.64	3.40	4.9	0.2	2.0	7
HD 62509 b	2.90	1.69	10.3	0.3	5.6	24
Gl 86 b	4.01	0.11	11.0	9.4	2.9	40
HD 147513 b	1.00	1.26	12.9	150.4	0.8	15
ups And b	0.69	0.06	13.5	20.2	1.4	10
ups And c	1.98	0.83	13.5	20.2	1.4	30
ups And d	3.95	2.51	13.5	20.2	1.4	58
gamma Cephei b	1.60	2.04	13.8	1.1	3.6	16
51 Peg b	0.47	0.05	14.7	0.2	6.2	3
tau Boo b	3.90	0.05	15.0	198.5	0.8	58
HR 810 b	1.94	0.91	15.5	103.9	0.8	30
HD 128311 b	2.18	1.10	16.6	39.9	0.9	33
HD 128311 c	3.21	1.76	16.6	39.9	0.9	48
HD 10647 b	0.91	2.10	17.3	22.9	1.4	14
GJ 3021 b	3.32	0.49	17.6	170.2	0.8	49
HD 27442 b	1.28	1.18	18.1	1.9	2.7	14
HD 87883 b	1.78	3.60	18.1	2.6	3.3	19
HD 189733 b	1.13	0.03	19.3	17.3	1.7	14
HD 192263 b	0.72	0.15	19.9	7.1	2.5	8

[Reiners & Christensen, 2010]

• Magnetic reconnection and electron acceleration at the magnetopause?

- Computation of parallel E field (assuming B_∗=1G)
- Number and energy of runaway electrons
- Parametrization by "efficiency" η

[Jardine & Cameron, 2008]

PREDICTIONS FOR EXOPLANETS

- Theoretical predictions :
 - → M-I: LF radio output vs M-I coupling (rotation), up to 10⁴ x Jupiter's
 - → SPI : HF radio output from terrestrial planets around White Dwarfs

 Star-Planet discrimination : polarization (circular) + periodicities (rotation, orbital)

MOTIVATIONS FOR STUDYING EXOPLANET'S RADIO EMISSIONS

- Planetary |B| & tilt (e.g. Jupiter) ⇒ dynamo
 ⇒ planetary interior structure
- Planetary rotation (J, S, U, N) ⇒ spin-orbit locking ?
- Presence of satellites (e.g. lo)

[Higgins et al., 1997]

MOTIVATIONS FOR STUDYING EXOPLANET'S RADIO EMISSIONS

- Planetary |B| & tilt (e.g. Jupiter) ⇒ dynamo
 ⇒ planetary interior structure
- Planetary rotation (J, S, U, N) ⇒ spin-orbit locking ?
- Presence of satellites (e.g. lo)
- SPI energetics, magnetospheric dynamics, M-I coupling
- Orbit inclination

MOTIVATIONS FOR STUDYING EXOPLANET'S RADIO EMISSIONS

→ Conditions for life (shielding planet's atmosphere and surface vs CR/SW/CME, O3 destruction, atmospheric erosion/escape)

[Griessmeier et al., 2004; Khodachenko et al., 2006...]

+ Independent discovery tool ? (planets around active, magnetic or variable stars)

- Targeted searches
 - theory/scaling laws applied to exoplanet census ⇒ τ Boo, υ And, 55 Cnc ...
 - strongly magnetized stars ⇒ HD 189733 ...
 - planets with very elliptical orbit and close-in periastron ⇒ HD 80606
 - optical SPI signatures

[Lazio & Farrell, 2007; Lazio et al., 2010]

HD 80606 b

Orbit of Mercury

Small dots are spaced by 2.4 hr.

Rotation period of planet is 36.83 hr.

To Earth

[Lazio et al., 2004; Griessmeier et al., 2007]

[Donati et al., 2006]

[Farès et al., 2010]

Past observations

VLA 74+ MHz, UTR-2 10-32 MHz, GMRT 150+ MHz

- → no confirmed detection : |B|, beaming, flux density ?
- → hint on HAT-P-11 @ GMRT

- Ongoing observations
 - UTR-2 10-32 MHz (100+ h) [Zarka et al.]
 - LOFAR 20-80 MHz (~100 h) [Lazio, Zarka et al.]
 - LWA/HJUDE (~5000 h) [Hartman, Hallinan, et al.]

LOFAR-LBA: Ups And

A volume-limited survey of known HJs

distance:	semi-	-major	axis:	projected mass:			location:
d < 50 pc	a	< 0.5 A	\U	$M \sin i > 0.5 \mathrm{M_J}$			northern sky
	A .	1			,		
	- d	\dot{a}	P_{orb}	M	Coordinates	Best	Num.
Planet	(pc)	(AU)	(d)	$(M_{\rm J})$	(J2000)	month	days
Hot Jupiters likely to be tidally locked:							
v And b	13.49	0.059	4.62	1.4	$01^{\rm h}37^{\rm m} + 41^{\circ}24'$	Sep	37
τ Boo b	15.62	0.048	3.31	6.5	$13^{\rm h}47^{\rm m} + 17^{\rm o}27'$	Mar	43
$\rm HD\ 189733\ b$	19.45	0.031	2.22	1.13	$20^{\rm h}01^{\rm m} + 22^{\rm o}43'$	$_{ m Jun}$	29
HD 187123 b	48.26	0.042	3.10	> 0.51	$19^{\rm h}47^{\rm m} + 34^{\circ}25'$	$_{ m Jun}$	31
HD 209458 b	49.63	0.047	3.52	0.69	$22^{h}03^{m} + 18^{\circ}53'$	Aug	32
Hot Jupiters less likely to be tidally locked:							
55 Cnc b	12.34	0.116	14.65	> 0.84	$08^{\rm h}53^{\rm m} + 28^{\circ}20'$	Dec	30
ρ CrB b	17.24	0.226	39.84	> 1.06	16 ^h 01 ^m +33°18′	Apr	30
70 Vir b	17.99	0.484*	116.69	> 7.46	$13^{\rm h}28^{\rm m} + 13^{\rm o}47'$	Mar	30
HD 195019 b	38.52	0.137	18.20	> 3.58	$20^{\rm h}28^{\rm m} + 18^{\rm o}46'$	$_{ m Jun}$	30
${ m HD}\ 114762\ { m b}$	38.65	0.363*	83.89	> 11.68	13 ^h 12 ^m +17°31′	Mar	30
${ m HD} \ 38529 \ { m b}$	39.28	0.131*	14.31	> 0.86	$05^{\rm h}47^{\rm m} + 01^{\circ}10'$	Nov	30
HD 178911 Bl	42.59	0.345*	71.48	> 7.29	$19^{\rm h}09^{\rm m} + 34^{\circ}36'$	$_{ m Jun}$	30
$\mathrm{HD}\ 37605\ \mathrm{b}$	43.98	0.261*	54.23	> 2.86	$05^{\rm h}40^{\rm m} + 06^{\circ}04'$	Nov	30
* C			- 4 4 l	- 0.1			~

^{*} Sources with eccentricities greater than 0.1.

- Surveys-Catalogs correlations
 - TGSS 150 MHz
 - → 4 candidates out of 175 exoplanetary systems

(61 Vir, 1RXS1609, HD 86226, HD 164509) 18-120 mJy

+ 171 3σ upper limits 8.7 - 136 mJy

- LOFAR MSSS

→ HBA: 120-160 MHz (≤120", ≤5 mJy/b)

→ LBA: 30-75 MHz (≤100", ≤15 mJy/b)

- OLWA

Radio emissions much stronger than Jupiter's at frequencies
 ≥150 MHz is rare ?

SCIENCE OUTCOME ENABLED BY SKA

Radio emissions much stronger than Jupiter's at frequencies
 ≥150 MHz is rare ? |B| to low, narrow beaming, low flux density

→ Need to explore a large sample of targets with highest possible continuum sensitivity, LF, circular/full Stokes

NB: ~11" resolution at 110 MHz → no star-planet resolution

 Imaging down to thermal (confusion) noise + beamformed observations (time variations)

SCIENCE OUTCOME ENABLED BY SKA

- Jupiter bursts at 30-40 MHz : ~40 µJy at 10 pc range
- SKA-Low 50-350 MHz : sensitivity ~10-17 μJy (20 MHz × 1 hour),
 10-30 x better than LOFAR
 - → Jupiter ~detectable at a few parsecs (~independent on high power / high B extrapolations)
 - → highly likely that SKA-Low will detect exoplanetary radio signals

SCIENCE OUTCOME ENABLED BY SKA

Targets

- \rightarrow exhaustive survey up to 10(30) pc
 - ~400(2500) stars/WD/BD within 10(30) pc, with ~35(200) known exoplanets
- → targeted SPI, bright XUV stars, high B stars, Kepler fields ...
- → surveys, commensal analyses

Observations

- → several epochs x several hours (phase effects/variability) [multi-beam]
- → circular / full Stokes
 - ⇒ many detections expected, with higher S/N
 - ⇒ quantitative interpretations
 - ⇒ opening new field of comparative exo-magnetospheric physics

SYNERGIES

- With other SKA observations
 - → solar-like bursts
 - → stellar flares : planet induced, cool stars cyclotron Maser

[Osten, Hallinan, et al.]

→ Brown dwarfs pulses discovered at GHz frequencies

 \rightarrow Periodic pulses (~2 h), 100% circularly polarized, $T_B > 10^{15}$ K, $|B| \sim 2$ kG

SYNERGIES

- With other SKA observations
 - → from brown dwarfs to exoplanets (decreasing Prot, cooler & more neutral atmosphere, larger-scale stable B topologies, weaker |B|)

[Hallinan]

- → tracing B and radio flux densities from brown dwarfs to planets will bring unique constraints for dynamo theories & radio emission scaling laws
- → lower mass planets more frequent around M dwarfs, close-in planets in habitable zone
- → commensal SETI searches
 (if beamformed raw voltages can be exported in // to imaging or BF spectral data)

SYNERGIES

- With other wavelengths
 - → ZDI (CFHT/Espadon, TBL/Narval, CFHT/Spirou)
 - ⇒ stellar B, planets around M dwarfs

[Donati et al., 2006+]

- → UV-X observations (HST, JWST, XMM, Chandra, Athena)
 - ⇒ stellar flares, atmospheres

- → PLATO, TESS ⇒ more nearby exoplanets
- → ESO-VLT/NGTS, ESPRESSO, GAIA ...
 - ⇒ 10's exoplanets per SKA-Low FoV
- \rightarrow UTR-2, OLWA, NenuFAR \Rightarrow f \leq 50 MHz, follow-up

RADIO DIAGNOSTIC OF STAR-PLANET PLASMA INTERACTIONS

- Broad New Field to Explore
- Theoretical Frame ~Ready
- Optimistic Prospects with SKA