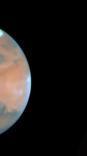


Initial conditions and early evolutions of terrestrial planets

Eric Chassefière¹, François Leblanc², Hélène Massol¹, Olivier Mousis³, Emmanuel Marcq²

¹GEOPS, Université Paris Sud/CNRS

²LATMOS, Université Versailles Saint-Quentin/ CNRS


³UTINAM, Université de Franche-Comté/ CNRS

Compared terrestrial planets

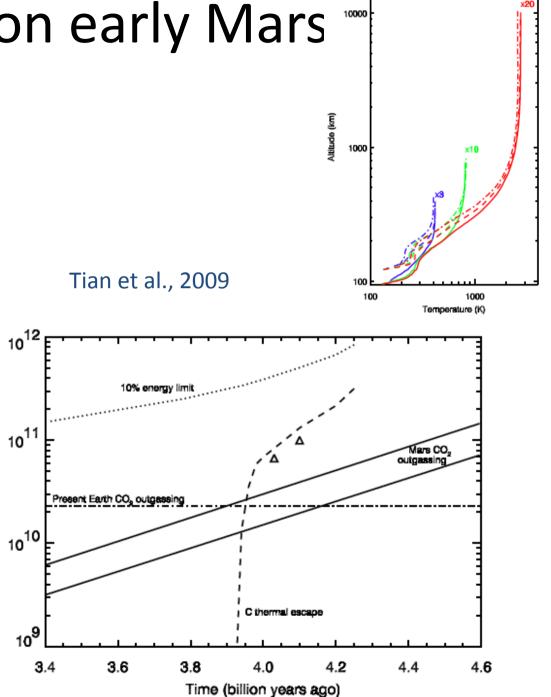
MARS

- → Small planet
- → Tenuous atmosphere : 7 mbar CO₂
- → Mean surface temperature : ≈-60°C
- → Water: ≈35 m thick GEL at the surface
- → How much carbonates, hydrates in the

crust?

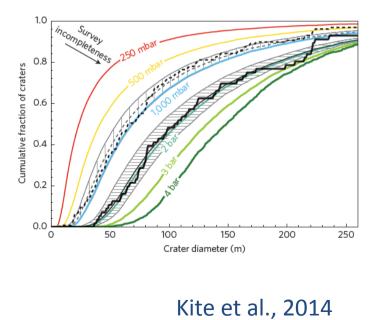
VENUS

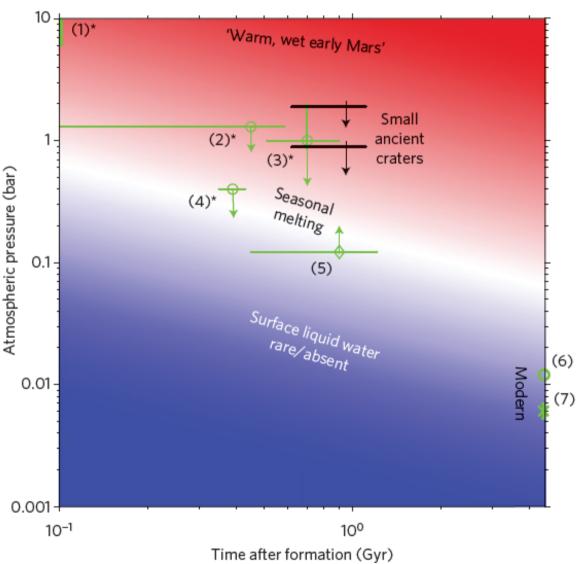
- → Massive atmosphere : 90 bar CO₂
- → Mean surface temperature : ≈730°C
- → Water : a few precipitable centimeters in the atmosphere


EARTH

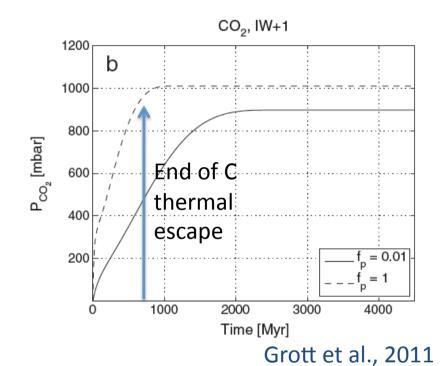
- \rightarrow Dense atmosphere : 1 bar N₂, O₂ (biotic)
- → Mean surface temperature : ≈15°C
- → 60 bar CO₂ in submarine carbonates
- → Water: 3 km thick GEL (+several terrestrial oceans in the mantle?)

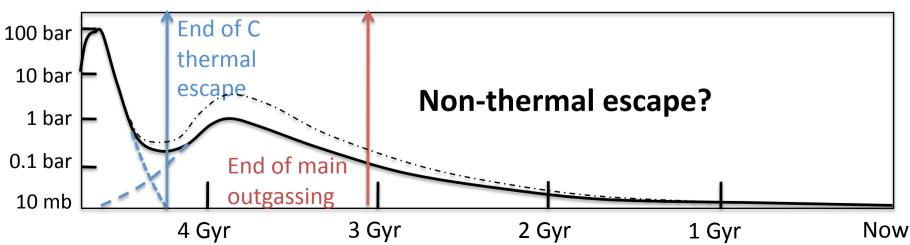
Loss of CO₂ on early Mars


- Initial CO₂ inventory : ≈a few 10 bar (id. Earth, Venus).
- On Mars, loss of 1 bar $CO_2/1-10$ Myr by hydrodynamic escape (Tian et al., 2009).
- Loss > outgassing
- until 4 Gyr bp.

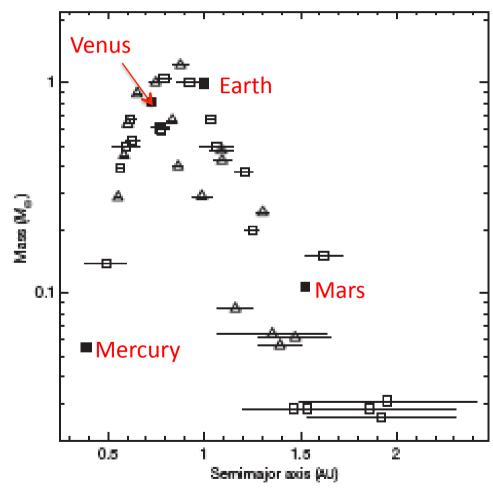

 Possible accumulation of CO₂ Possible only at late Noachian (in carbonates?)

Constraint on early Mars' CO₂ pressure


 CO₂ pressure < 1-2 bar 3.6 Gyr ago from the size of the smallest craters (HiRise/ MRO)

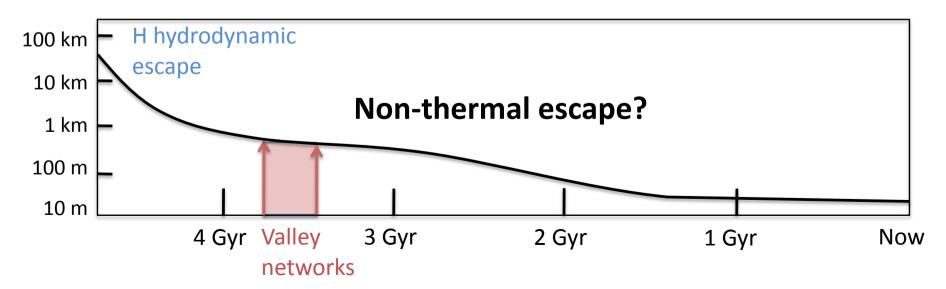


CO₂ volcanic outgassing

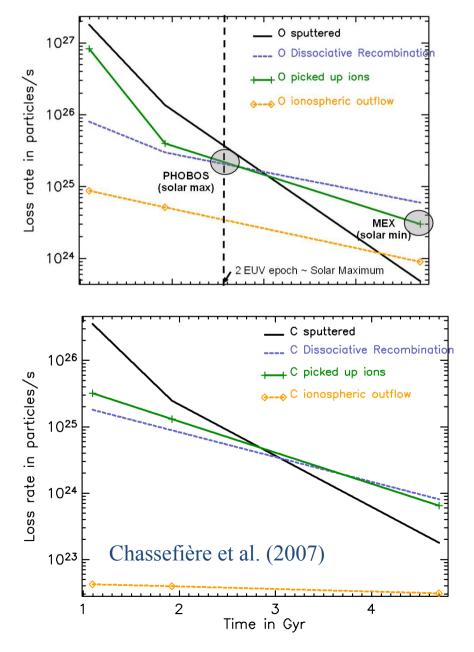

- ≈1 bar CO₂ outgassed
- ≈0-0.5 bar outgassed after the end of C hydrodynamic escape
- + cometary input & remnant of initial CO₂?

Why is Mars small?

- The small size of Mars is the reason why Mars rapidly lost its early atmosphere.
- Explained by Jupiter's early gas-driven migration to 1.5 AU (then back), truncating planetesimal disk at 1 AU (Walsh et al., 2011).



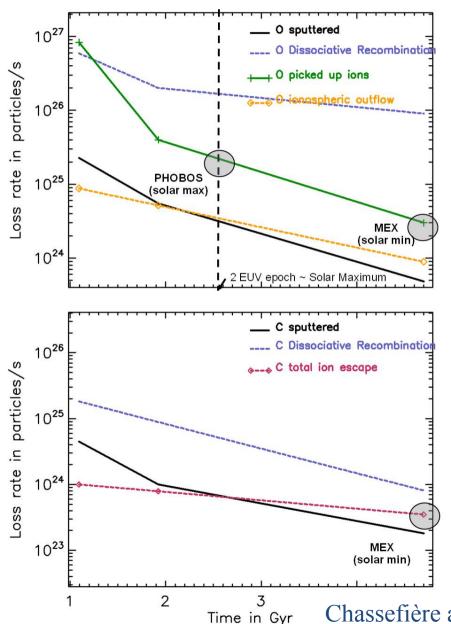
Walsh et al., 2011


Nice model

Loss of H₂O on early Mars

- Initial inventory up to several Earth oceans: several 10 km thick GEL (Raymond et al., 2006).
- Amount of outgassed H₂O: 20-60 m thick GEL (Grott et al., 2011).
- ≈500 m thick GEL required to carve outflow channels (Carr and Head, 2003)
- Present inventory: ≈35 m thick GEL (Christensen, 2006).

Non-thermal escape: initial estimates


- Sputtering rate estimated using gasdynamic simulation of Mars' interaction with the solar wind (Luhmann et al., 1992)
- Dissociative recombination estimated from Luhmann et al. (1992)
- Ion escape: Ma et al. (2004)

During the last 4.1 Gyr Up to 100 mbar of CO₂

十

Up to 120 m of water lost to space

Revisited non-thermal escape fluxes

- Sputtering rate estimated using magnetospheric hybrid simulation of Mars' interaction with the solar wind (Chaufray et al. 2007)
- Dissociative recombination estimated <u>from Valeille et al. (2010)</u>
- Ion escape: Lundin et al. (2009) <u>MEX/</u> <u>ASPERA at present solar Minimum</u> + Ma et al. (2004)

During the last 4.1 Gyr Up to 10 mbar of CO₂

+

Up to 5 m of water lost to space

Chassefière and Leblanc (2011)

Why sputtering estimate changed so much?

ORIGINAL SCENARIO

- 7 UV/EUV flux ⇒ 7 ionization ⇒ 7 pick-up ion
 - \Rightarrow 7 ion bombardment \Rightarrow 7 sputtering

From solar minimum to solar maximum:

Sputtering increases by ~50 (Luhmann et al., 1992)

+

- $\Rightarrow \pi$ exospheric production $\Rightarrow \pi$ pick-up ion
- ⇒ **7** sputtering by factor <2 (Johnson & Luhmann, 1998) From 1 EUV to 2 EUV **7** sputtering by factor 100

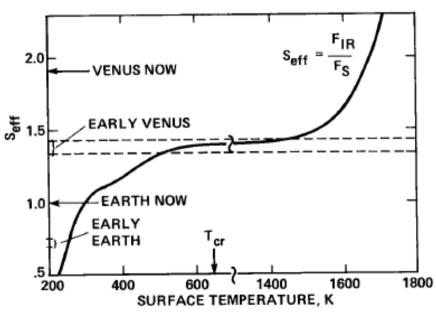
BUT

NEW SCENARIO

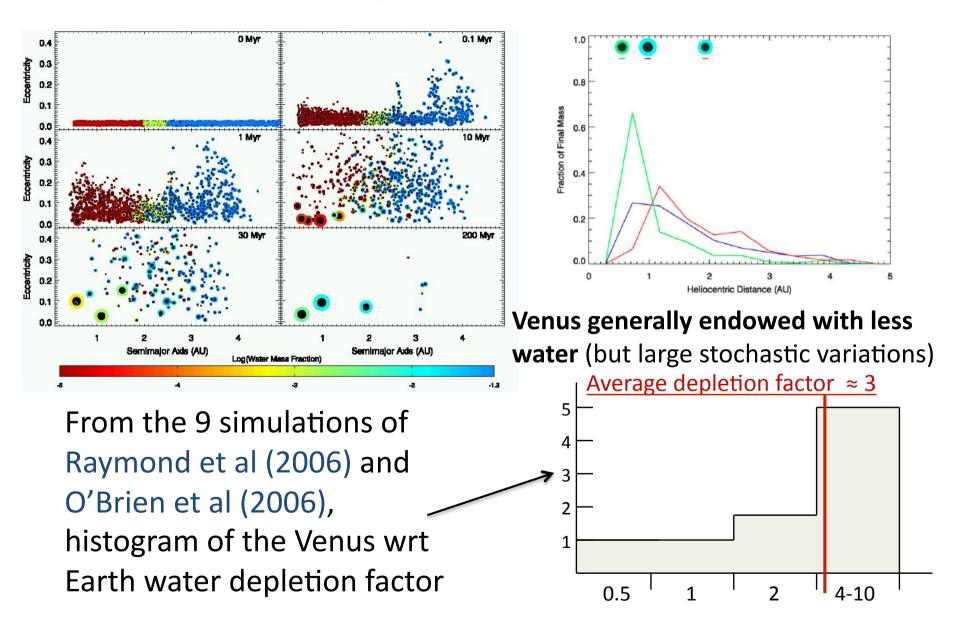
- 7UV/EUV flux $\Rightarrow 7$ ionization $\Rightarrow 7$ ionospheric pressure
- \Rightarrow \Rightarrow planetopause alt. \Rightarrow \Rightarrow S.W. interaction \Rightarrow \Rightarrow sputtering From solar minimum to solar maximum:

Sputtering increases by only 4 (Chaufray et al., 2007)

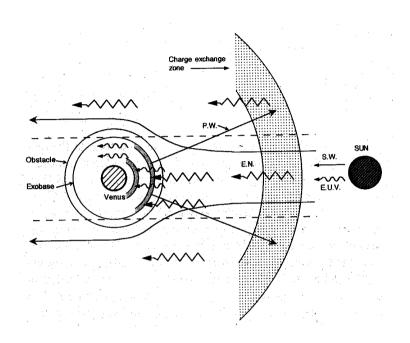
Crustal sinks required during last 4 Gyr


- Strong thermal -hydrodynamic- escape of C (from CO₂) and H (from H₂O) expected during the first half billion years
 - \rightarrow Mars lost most of its volatiles (CO₂/H₂O) before 4 Ga.
- Non-thermal escape postdating hydrodynamic escape cannot explain the loss of more than 10 mbar/5 m thick GEL of CO₂/ H₂O during the last 4 Gyr
 - \rightarrow CO₂ and H₂O crustal sinks (carbonates, hydrates) are required for trapping 1 bar/ 500 m thick GEL of CO₂/H₂O.
- Potential important roles of clathrates as an intermediate reservoir of volatiles, frozen into the cryosphere
 - → up to a few bar of CO₂, and a few 0.1 bar of SO₂, possibly trapped in Mars' cryosphere 4 Gyr ago (Chassefière et al., 2013).

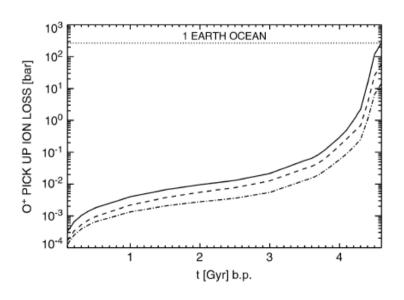
Consequences and questions


- Non-thermal escape didn't play a strong role in removing Mars atmosphere 3.6-3.8 Gyr ago.
- It is highly improbable that the cessation of the magnetic dynamo resulted in a significant escape of atmosphere and further desertification.
- Volatiles present in the atmosphere or trapped in the cryosphere 4 Gyr ago have been (likely) <u>stored in the crust</u> through hydrothermal geochemical reactions (carbonation, hydration, ...).
- If so, what has been the **mechanism triggering hydrothermal activity at the end of the Noachian?** Tharsis formation, late heavy bombardment...?
- Crucial role of atmosphere-subsurface interactions (outgassing/physical-chemical trapping processes)

An Earth-sized planet: Venus


- Initial water endowment probably similar to that of Earth:
 large scale radial mixing of planetesimals in primitive nebula.
- Possible formation of an Earth-like water ocean in « faint young Sun » conditions (Kasting, 1988).
- Further runaway (Rasool and de Bergh, 1970) or moist greenhouse in the course of Sun illumination increase.
- Further photodissociation of H₂O in upper atmosphere and hydrodynamic escape of H, yielding the present massive CO₂ atmosphere (Kasting and Pollack, 1983; Chassefière, 1997)

Accretion history and initial water content


Thermal and non-thermal escape

EUV+**Solar wind**-powered hydrodynamic escape (Chassefière, 1996, 1997):

- Potential removal of 1 or several TO in a few 10 or 100 Myr (Gillmann et al., 2009).
- Efficient (but incomplete) removal of oxygen through frictional escape.

In the case of a very strong primitive solar wind flux, **pick-up ion escape** may have removed the oxygen content of 1 terrestrial ocean (Kulikov et al., 2006).

Early magma ocean phase

- Big impacts during the main accretion phase can melt the whole planet
- Duration of the cooling phase of the magma ocean under a massive H₂O-CO₂ atmosphere: ≈0.1/1/10 Myr for Mars/Earth/Venus (Elkins-Tanton, 2006; Lebrun et al., 2013; Hamano et al., 2013)
- Venus close to the critical distance from the Sun inside which magma ocean never cools: did a water ocean ever form on Venus and, if so, how long did it last?
- Mars and Earth: possibility of sequential water oceans on these planets during main accretion, potentially increasing impact-induced hydrodynamic escape (Genda et al., 2006) (lower shock impedance ocean vs ground)

Cf following talk by Massol et al.

Combined effects of hydrodynamic escape and planet's type

	Planet inside critical distance (type II)	Planet outside critical distance (type I)
Slow escape (big or far from Sun planet)	 Magma planet (?)* (→ solid planet after loss of all H₂O) No water ocean Massive CO₂ atmosphere → Venus? (big and close) 	 Solid planet Water ocean Moderate atmosphere (CO₂ trapped in carbonates) ➤ Earth? (big and far)
Fast escape (small or close to Sun planet)	 Solid planet No water ocean No atmosphere → Mercury? (small and close) 	 Solid planet No water ocean Moderate to tenuous atmosphere → Mars? (small and far)

^{*} If type I planet close to the critical distance, a water ocean could have formed and further evaporated due to the increase of the solar constant.

Conclusion

- **Disk-protoplanets dynamics/interactions** → **initial conditions**: size/position of final planet (radiative budget & greenhouse effect, strength of thermal escape, duration of magma ocean cooling...)
- Interplay of energy/matter exchange fluxes at BOTH interior-atmosphere and atmosphere-interplanetary space interfaces + disk dissipation kinetics (driving impact history) → early evolution (first ≈1 Gyr)
- Why did Mars and Venus evolve divergently? Mars small (early magma ocean crystallization, early escape of most volatiles—including CO₂-)/ Venus close to (inside?) critical distance (slow magma ocean crystallization, H₂O remaining a long time in the interior/atmosphere system and finally escaping —but not CO₂-).
- On Earth, magma ocean rapidly crystallized: a water ocean formed, preventing most H₂O from escaping.
- Other favourable factors for Earth: rotation axis stabilized by the Moon, more rapid decrease of impactor fluxes than at Mars distance, right distance from the Sun to easily achieve positive surface temperature.