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The tidal problem

● How do the spins and orbit evolve on astronomical time-scales?
● Time-dependent deformation: dissipation, power and torque

● Typical outcomes: synchronization, alignment, circularization
● No tidal equilibrium if total angular momentum too small
● Tidal equilibrium may be inaccessible in practice
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Critical angular momentum and tidal equilibria

M = M1 +M2, µ =
M1M2

M
, I = I1 + I2

Lc = 4I⌦c, ⌦c = (GM)1/2
⇣ µ

3I

⌘3/4

● For                     , stable tidal equilibria have
and so are inaccessible for 

M1 = 1M� P & 7

✓
M2

MJ

◆�3/4

day

M2 . MJ

● Stable tidal equilibria most relevant for planets of 10+ Jupiter masses
and orbital periods of 3+ days 



The tidal problem

● Linear versus nonlinear tides ➜

● Tide in star versus tide in planet
● Nearly circular (harmonic) versus nearly parabolic (impulsive)

● Q, Q’, Im(k), etc. (limitations)
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Tidal amplitudes

Jupiter–Io: 2 x 10-7

Saturn–Titan: 3 x 10-8

Uranus–Ariel: 4 x 10-8

Neptune–Triton: 8 x 10-8

WASP-19 b: 6 x 10-2

● Internal nonlinearities can occur even when ✏ ⌧ 1



Tidal forcing
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Quadrupolar components up to first order in e and i :
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Table 1 Quadrupolar components of the tidal potential, correct to first order in eccentricity and
obliquity

l m n |A| Description
2 0 0

√
π
5

Static tide

2 2 2
√

6π
5

Asynchronous tide

2 0 1 3e
√

π
5

Eccentricity tides

2 2 1 1
2 e

√
6π
5

2 2 3 7
2 e

√
6π
5

2 1 0 i
√

6π
5

Obliquity tides

2 1 2 i
√

6π
5

Tidal component:
a single component of
the tidal potential
when it is decomposed
into spherical
harmonic functions
and Fourier-analyzed
in time

Inertial frame: a
nonrotating frame of
reference

Fluid frame: a frame
of reference rotating
with the spin angular
velocity of body 1

and order of the spherical harmonic, respectively, and m is also referred to as the azimuthal wave
number. The integer n labels temporal harmonics of the orbital motion.

In most applications the bodies are sufficiently well separated that the quadrupolar components
(l = 2) are strongly dominant. In the special case of a circular, coplanar orbit (e = i = 0), the
only terms present have n = m, and l − m must be even. In the case of a circular, inclined orbit
(e = 0), n is restricted to the range [−l, l ], and l − n must be even (e.g., Ogilvie 2013). For the
complete representation of an eccentric orbit, all values of n are required. However, if terms
smaller than O(e p ) can be neglected, then the largest value of |n| that needs to be considered is
l + p . Table 1 gives the amplitudes, but not the phases, of the quadrupolar components of the
tidal potential, correct to first order in e and i.

Because Y m
l (θ, φ) ∝ eimφ , the phase of each tidal component is arg Al,m,n + mφ − n$ot. When

m #= 0, the phase rotates with angular velocity n$o/m. The angular frequency of each component
measured in a nonrotating frame is ω = n$o, which may be called the tidal frequency in the inertial
frame. Of greater importance for the physical response of the fluid is the angular frequency
measured in a frame that rotates with the spin angular velocity $s (spin frequency) of body 1,
ω̂ = n$o − m$s, which may be called the tidal frequency in the fluid frame. When m #= 0, the
difference between ω and ω̂ is due to an angular Doppler shift. (In general, body 1 may rotate
differentially, in which case ω̂ depends on position.)

The tidal frequencies in the fluid frame are therefore integer linear combinations of the
spin and orbital frequencies; for the seven components listed in Table 1, these are plotted in
Figure 2. As is discussed in Section 3, the Coriolis force plays a dominant role in the wave-like
part of the tidal response when |ω̂/$s| < 2 (and may still play an important role outside this
interval), and it can be seen that all seven components typically have frequencies in this range,
unless the body is far from the synchronous state.

As the eccentricity is increased from 0 toward 1, the time-dependence of the tidal forcing
changes from a sinusoidal variation to one that is strongly peaked at the pericenter of the orbit.
This is a result of the sensitivity of the tidal force to the orbital separation. The above expansion
is still valid for large eccentricities, but a broad spectrum of frequencies is obtained (Figure 3). In
a highly eccentric orbit, the tidal interaction has an impulsive character, consisting of a series of
tidal encounters, each of which might be approximated as a parabolic orbit.
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Tidal forcing frequencies

orbital frequency / spin frequency
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Higher eccentricities

e = 0.7
e = 0.5
e = 0.3
e = 0.1



Tidal response
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● Love number (response function) :

●           determines power, torque and dissipation rateIm(k)
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Direction of tidal evolution

spin frequency / orbital frequency
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Tides in stars and giant planets

celestial mechanics

fluid dynamics

(non-trivial)

(harder!)

Q, Q’, Im(k), etc. (limitations)



● Stellar spin period
● Stellar obliquity (spin–orbit misalignment)

Observed quantities relevant to tides

● Planetary radius
● Orbital period decay (?)
...etc.

● Orbital period and planetary mass
● Orbital period and eccentricity



Equilibrium / non-wavelike tide:
● Quasi-hydrostatic spheroidal bulge ➜

Tidal decomposition

Dynamical / wavelike tide:

● Accompanied by large-scale flow
● Not a complete solution of equations

● Involves internal (gravity / inertial) waves excited by periodic forcing
● May involve resonances and short length-scales

● Completes solution of equations

● Not uniquely defined in neutrally stratified (convective?) regions





Equilibrium / non-wavelike tide:
● Convective turbulent viscosity (MLT x reduction factors) ➜

Mechanisms of tidal dissipation

● Hydrodynamic instability (elliptical / parametric, etc.)
● Multiphase fluids in giant planets (Stevenson)
● Viscoelastic dissipation in solid cores (if present)



Zahn’s
reduction
factor

Goldreich’s
reduction
factor

standard equilibrium tide

(incompressible)

corrected equilibrium tide

(irrotational)



Mechanisms of tidal dissipation

Dynamical / wavelike tide:
● Radiative zones: internal gravity waves

● Convective zones: inertial waves

● Radiative damping (Zahn; Savonije) ➜
● Wave breaking / critical-layer absorption (Goldreich; Barker)
● More effective with deep radiative–convective transition
● Hot Jupiters (Lubow+ 1997): detailed calculations needed!

● Complicated linear response (wave singularities)
● More effective with larger core (solid or fluid)

● Complex response curves: resonance locking?
● Zonal flows / differential rotation (Favier+ 2014)
● Importance of internal structure (stratification, core, interfaces, etc.)



Savonije & Witte



Mechanisms of tidal dissipation

Dynamical / wavelike tide:
● Radiative zones: internal gravity waves

● Convective zones: inertial waves

● Radiative damping (Zahn)
● Wave breaking / critical-layer absorption (Goldreich; Barker) ➜
● More effective with deep radiative–convective transition
● Hot Jupiters (Lubow+ 1997): detailed calculations needed!

● Complicated linear response (wave singularities)
● More effective with larger core (solid or fluid)

● Complex response curves: resonance locking?
● Zonal flows / differential rotation (Favier+ 2014)
● Importance of internal structure (stratification, core, interfaces, etc.)



3D numerical simulations

Barker & Ogilvie 2011
Lower amplitude: standing wave

equatorial
plane



3D numerical simulations

Barker & Ogilvie 2011
Higher amplitude: breaking wave

equatorial
plane



3D numerical simulations

Barker & Ogilvie 2011
Higher amplitude: breaking wave

meridional
plane



Mechanisms of tidal dissipation

Dynamical / wavelike tide:
● Radiative zones: internal gravity waves

● Convective zones: inertial waves

● Radiative damping (Zahn)
● Wave breaking / critical-layer absorption (Goldreich; Barker)
● More effective with deep radiative–convective transition
● Hot Jupiters (Lubow+ 1997): detailed calculations needed!

● Complicated linear response (wave singularities) ➜
● More effective with larger core (solid or fluid)

● Complex response curves: resonance locking?
● Zonal flows / differential rotation (Favier+ 2014)
● Importance of internal structure (stratification, core, interfaces, etc.)
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Mechanisms of tidal dissipation

Dynamical / wavelike tide:
● Radiative zones: internal gravity waves

● Convective zones: inertial waves

● Radiative damping (Zahn)
● Wave breaking / critical-layer absorption (Goldreich; Barker)
● More effective with deep radiative–convective transition
● Hot Jupiters (Lubow+ 1997): detailed calculations needed!

● Complicated linear response (wave singularities)
● More effective with larger core (solid or fluid)

● Complex response curves: resonance locking?
● Zonal flows / differential rotation (Favier+ 2014) ➜
● Importance of internal structure (stratification, core, interfaces, etc.)



Favier+ 2014!/⌦ = 1.0

Tidally forced inertial waves and zonal flows



Mechanisms of tidal dissipation

Dynamical / wavelike tide:
● Radiative zones: internal gravity waves

● Convective zones: inertial waves

● Radiative damping (Zahn)
● Wave breaking / critical-layer absorption (Goldreich; Barker)
● More effective with deep radiative–convective transition
● Hot Jupiters (Lubow+ 1997): detailed calculations needed!

● Complicated linear response (wave singularities)
● More effective with larger core (solid or fluid)

● Complex response curves: resonance locking? ➜
● Zonal flows / differential rotation (Favier+ 2014)
● Importance of internal structure (stratification, core, interfaces, etc.)



Ogilvie
tidal frequency / spin frequency



Savonije & Witte



● Nonlinear regimes
● Differential rotation

● Interaction of waves / tides with convection

Recommendations for future theoretical work

● Local and global simulations
● Various codes with different capabilities

● Atmospheric gravitational and thermal tides in hot Jupiters

● Applications to a variety of more realistic interior models
● Applications to systems with large obliquity


