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Abstract Since 20 years, a large population of close-in planets orbiting various classes of
low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the
dissipation of the kinetic energy of tidal flows in the host star may modify its rotational
evolution and shape the orbital architecture of the surrounding planetary system. In this
context, recent observational and theoretical works demonstrated that the amplitude of this
dissipation can vary over several orders of magnitude as a function of stellar mass, age and
rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase
because of the contraction of stars and their spin-down because of the torque applied by
magnetized stellar winds strongly impact angular momentum exchanges within star—planet
systems. Therefore, it is now necessary to take into account the structural and rotational
evolution of stars when studying the orbital evolution of close-in planets. At the same time, the
presence of planets may modify the rotational dynamics of the host stars and as a consequence
their evolution, magnetic activity and mixing. In this work, we present the first study of the
dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6 My to
1.2 M) where we compute the simultaneous evolution of the star’s structure, rotation and
tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to
the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger
by several orders of magnitude than the one of the equilibrium tide currently used in Celestial
Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction
in the star, the orbital migration of the planet is now more pronounced and depends more on
the stellar mass, rotation and age. This would very weakly affect the planets in the habitable
zone because they are located at orbital distances such that stellar tide-induced migration
happens on very long timescales. We also demonstrate that the rotational evolution of host
stars is only weakly affected by the presence of planets except for massive companions.
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1 Introduction

The discovery 20years ago of the first hot Jupiter 51 Peg close to its host star (Mayor
and Queloz 1995) opened the path to the detection and characterization of more than 1600
confirmed exoplanetary systems, which have a large diversity of host stars (from M to A
type-stars), orbital architecture and planetary types (e.g. Perryman 2011; Fabrycky et al.
2014). Among them, a large population of systems are constituted by planets orbiting very
close to their host stars as this is the case for example for hot Jupiters (e.g. Mayor and Queloz
1995; Henry et al. 2000; Charbonneau et al. 2000) and other compact planetary systems (e.g.
Fang and Margot 2012; Fabrycky et al. 2014). In those configurations, tidal dissipation inside
the host stars may strongly affect surrounding planetary orbits (Jackson et al. 2008; Husnoo
et al. 2012; Lai 2012; Guillot et al. 2014) and the spin-orbit inclination (e.g. Winn et al.
2010; Albrecht et al. 2012) while the presence of a massive close-in planet should modify
its rotational evolution (e.g. Pont 2009; Lanza 2010; Bolmont et al. 2012; McQuillan et al.
2013; Poppenhaeger and Wolk 2014; Paz-Chinchén et al. 2015; Ferraz-Mello et al. 2015;
Ceillier et al. 2016).

At the same time, stellar structure and rotation strongly vary from the formation of their
planetary systems during their Pre-Main-Sequence to their late stage of evolution (e.g. Maeder
2009; Bouvier 2008; Irwin et al. 2011; McQuillan et al. 2013, 2014, and references therein).
This has strong consequences for the amplitude of tidal dissipation in their interiors (e.g.
Zahn 1966; Zahn and Bouchet 1989; Ogilvie and Lin 2007; Mathis 2015a,b), their magnetic
activity (e.g. Barnes 2003; Barnes and Kim 2010; Garcia et al. 2014) and their related winds
(e.g. Skumanich 1972; Kawaler 1988). In stellar convective regions, tidal dissipation is due to
the action of the turbulent friction applied by convective eddies on the so-called equilibrium
tide flow induced by the hydrostatic elongation along the line of centers because of the
presence of the companion (e.g. Zahn 1966; Remus et al. 2012a) and tidal inertial waves
driven by the Coriolis acceleration (e.g. Ogilvie and Lin 2007; Goodman and Lackner 2009;
Lai 2012; Auclair Desrotour et al. 2015). In stellar radiation zones, it is due to thermal
diffusion and breaking mechanisms acting on gravito-inertial waves (Zahn 1975; Barker
and Ogilvie 2010). In the case of the convective envelope of low-mass stars recent works
(Ogilvie and Lin 2007; Barker and Ogilvie 2009; Mathis 2015a) demonstrated that tidal
dissipation varies over several orders of magnitude with stellar mass, age and the related
internal structure, and rotation. Simultaneously, because of their rotational evolution, the
torques applied by stellar winds vary with stellar age (Matt et al. 2015).

Since tidal dissipation and stellar winds both strongly impact the dynamical evolution
of their planetary systems along the evolution of their host stars (Barker and Ogilvie 2009;
Bolmont et al. 2012; Damiani and Lanza 2015; Ferraz-Mello et al. 2015), it thus becomes
mandatory to take into account their potential strong variations over orders of magnitude as
a function of stellar age using their best available ab-initio modeling. In this work, we thus
propose to replace the currently used constant values of stellar tidal dissipation calibrated on
observations (e.g. Hansen 2010, 2012) by the new values recently computed for convective
envelopes of low-mass stars as a function of stellar mass, age and rotation (Mathis 2015a, b)
based on the theoretical work by Ogilvie (2013) using realistic stellar grid models (Siess
et al. 2000). This will allow us for the first time to unravel the effects of the rotation and
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tidal dissipation history of stars on the evolution of close-in planets. In Sect. 2, we describe
the implementation of the new tidal model in our state-of-the-art celestial mechanics code
(Bolmontetal. 2011, 2012). In Sect. 3, we explore the orbital evolution of planets of different
masses (from Earth mass to Jupiter mass) around various low-mass K-, G-, F-type host stars.
In Sect. 4, we examine and discuss the impact of their orbital evolution on the stellar rotational
history in the context of asteroseismic constraints which have been recently obtained (e.g.
Gizon et al. 2013; Ceillier et al. 2016). Finally, in Sect. 5, we present the conclusions of our
study and discuss its perspectives.

2 Model description
2.1 Tidal model
2.1.1 Matching two different tidal formalisms

The tidal model we present here is a first step in reconciling two different tidal formalisms.
On the one hand, we base our work on the same tidal model as in Bolmont et al. (2011, 2012,
2015), which computes the orbital tidal evolution of planetary systems and takes into account
the evolution of the star. The model is an equilibrium tide model (following Alexander 1973;
Mignard 1979; Hut 1981; Eggleton et al. 1998), which is very practical to compute orbital
evolution because it works for all eccentricities (Leconte et al. 2010) and allows for fast
computation. The dissipation of the kinetic energy of the tides inside the star is usually taken
to be constant throughout the system’s evolution.

On the other hand however, as a star evolves, its radius changes, mainly on the PMS, a
radiative core appears and gets bigger while the convective envelope becomes shallower for
stars from 0.45 M, to 1.4 M. All these structural changes have a strong influence on the way
the star dissipates tidal energy (e.g. Zahn 1966, 1975, 1977; Ogilvie and Lin 2007; Remus
et al. 2012a; Mathis 2015a,b) and this should be taken into account in tidal calculations.

Besides, by definition, the equilibrium tide does not take into account the dynamical tide
(Zahn 1975; Ogilvie and Lin 2007). The equilibrium tide corresponds only to the large-scale
flows induced by the hydrostatic adjustment of the star’s structure because of the presence
of the companion (Zahn 1966; Remus et al. 2012a). It is mainly dissipated in the convective
envelope of low-mass stars by the turbulent friction applied by convection (Zahn 1977, 1989).
However, both in convection and radiation zones, the equilibrium tide is not solution of the
hydrodynamic equations (e.g. Zahn 1975; Ogilvie and Lin 2004; Ogilvie 2013) and it must
be completed by the so-called dynamical tide. In convective regions, the dynamical tide is
constituted of inertial waves, which are driven by the Coriolis acceleration, that are excited
when the tidal frequency w € [—2£2,, 2§2,], where £2, is the rotation frequency of the star
(Ogilvie and Lin 2007). If the system is coplanar and the perturber is on a circular orbit, the
tidal frequency is simply w = 2(n — £2,), where n is the orbital frequency. This gives the
following condition on the orbital period of the planet: Py > 1/2 P, for the excitation of
tidal inertial waves, where P, is the rotation period of the star. In this context, Bolmont et al.
(2012) studied the tidal evolution of planets around evolving stars taking into account the
radius evolution of the star and its impact on the tidal evolution of planets. The planets were
chosen to be initially close to the corotation radius (defined as the orbital distance for which
n = £2,). Consequently, the planets considered in Bolmont et al. (2012) should in fact raise
inertial waves in the convective envelope of their host star. Therefore, a new dissipation, which
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adds to the one of the equilibrium tide, must be taken into account because of the turbulent
friction applied by convective eddies on tidal inertial waves. In stellar radiation zones, the
dynamical tide is constituted by gravito-inertial waves, in more explicit terms internal gravity
waves which are influenced by the Coriolis acceleration (Zahn 1975; Terquem et al. 1998;
Ogilvie and Lin 2007; Ivanov et al. 2013; Auclair Desrotour et al. 2015). In some cases,
their dissipation competes with those of the equilibrium tide and inertial waves in convective
regions (e.g. Goodman and Dickson 1998; Ogilvie and Lin 2007), especially when massive
companions excite high-amplitude waves that may non-linearly break at the center of K- and
G-type stars (Barker and Ogilvie 2010; Barker 2011; Guillot et al. 2014). Tidal dissipation
rates and torques are highly dependent on tidal frequency (e.g. Ogilvie and Lin 2004, 2007,
Auclair Desrotour et al. 2015); therefore, they vary over several orders of magnitude as
a function of the excitation frequency. This has strong consequences on tidal dynamics
(Witte and Savonije 1999; Auclair-Desrotour et al. 2014) with possible erratic variations of
orbital and rotational properties, which are not treated by “equilibrium tide”-like models.
Solving hydrodynamics equations for tidal flows and waves must thus be done in the Fourier
spectral space. This requires to expand tidal potential/force and perturbing function on Fourier
series (Kaula 1964; Zahn 1977; Mathis and Poncin-Lafitte 2009; Efroimsky and Makarov
2013), with a number of mandatory modes (and frequencies) that strongly increases with
orbital eccentricity and inclination, and obliquity (Savonije 2008). Then, computation of
tidal dynamics can become very heavy compared to “equilibrium tide”-like models.

This is the reason why we adopt several simplifications of the problem in this first work
where we wish to take into account the impact of the history of tidal dissipation in stars on
the orbital dynamics of close-in planets. First, we choose to focus only on tidal dissipation
in the external convective envelope of low-mass stars hosting planets (Ogilvie 2013; Mathis
2015a,b). Therefore, we take into account the dissipation of tidal inertial waves when Py, >
1/2 P, and of the equilibrium tide otherwise. Next, we simplify the treatment of the frequency-
dependence of the problem adopting two assumptions. On the one hand, we focus on binary
systems constituted by a planet on coplanar circular orbit around its evolving host star. The
problem is thus only dependent on the main tidal frequency w = 2(n — §2,) introduced in the
previous paragraph. We consider that the only tide driving orbital evolution is the stellar tide
(meaning that the planet is synchronized with zero obliquity).! On the other hand, instead of
taking into account the full frequency-dependence of tidal dissipation, we choose to adopt
the frequency-averaged approach first introduced by Ogilvie (2013) and applied to low-mass
stars by Mathis (2015a,b). The advantage of this method is that it provides us relevant orders
of magnitude for the dissipation as a function of structural and dynamical stellar parameters
(i.e. their mass, age, corresponding mass and radius of the convective envelope, and rotation;
Mathis 2015a,b) even if it filters out the potential variation of the dissipation over a narrow
range of frequencies (e.g. Ogilvie and Lin 2004, 2007; Auclair Desrotour et al. 2015). The
corresponding values of averaged dissipation will be here obtained for a range of stellar
masses (0.4 to 1.4 M) with a metallicity of Z = 0.02 and a mixing length parameter
(scaled on the local pressure height scale) « = 1.605 calibrated on the Sun using grids of
realistic models of low-mass stars computed by Siess et al. (2000) with the STAREVOL
code.

! For a close-in planet, the evolution time scale of its rotation period and obliquity is very short. We therefore
expect the planets we consider here to be synchronized and with a null obliquity very early in the evolution
(e.g., Leconte et al. 2010).
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If the system is coplanar and the orbit of the planet is circular, the frequency averaged
tidal dissipation (equation B13 of, Ogilvie 2013) is given by:
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We introduce the mass (M,) and the radius (R,) of the star, the mass (M.) and radius (R.)
of its radiative core, and its normalized rotation € = (.Q*/\/QM*/RE) = (82./240)s 2
being the critical angular velocity of the star. In the case of a coplanar orbit, the expansion of
the tidal force on spherical harmonics reduces to the quadrupolar mode (I = 2, m = 2). We
introduce the corresponding Love number k] = k% (Ogilvie 2013) giving the ratio between
the perturbation of the gravitational potential induced by the presence of the planetary com-
panion and the tidal potential evaluated at the stellar surface. Its imaginary part Im [k% (a))],
which provides us a direct quantification of tidal dissipation, can be expressed in terms of
the tidal quality factor Q%(a)) or the tidal angle 6% (w) (e.g. Remus et al. 2012a; Efroimsky
and Makarov 2013):

03() ™" = sgn(o) |E(@)| " Im [B(@)] = sin [263(a)]. A3)

This allows us to define an equivalent quality factor 0 and an equivalent modified quality
factor Q' as defined by Ogilvie and Lin (2007) and Mathis (2015a) and the corresponding
equivalent tidal angle §:2

3 k. > d
T 52 =sin[28] = /_ N Im[k%(w)];“’ = (D), @)

where k; is here the usual quadrupolar Love number, which evaluates the non-dissipative
hydrostatic elongation of the star in the direction of the planet.

Following Mathis (2015a), we can decouple the rotation part from the purely structural
part in Eq. (1). Therefore, for a star rotating at a fixed angular velocity £2,, we can define a
complementary frequency-averaged dissipation at fixed rotation:

(D)5 =€ D)y = € * {Im [3@)]),,, ®)

which allows us to isolate the dependence of the dissipation on the internal structure of the
star. It can also be expressed in terms of € = (Q*/ Q'M@/R%) = $2,/820,c, where 2¢ ¢

is the critical angular velocity of the Sun. We choose here to use € and Eq. (5) becomes:

2 We point out here that equivalent quality factors Q' and Q, which are proportional to the inverse of the
frequency-averaged dissipation <Im [k% (w)]>w, where (...), = ffooo ...dw/w, are not equivalent to poten-
tially defined frequency-averaged quality factors ( o' (a)))  and (O (®)) . In this framework, the relevant
physical quantity being <Im [k% (a))])w, we prefer to define directly equivalent quality factors from it.
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As a consequence, we can introduce an equivalent structural tidal quality factor Q/ defined

as a function of the equivalent tidal quality factor Q’

o2l

20 20

so that when the spin of the star increases, 1 /@ increases, thus @ decreases and the dissi-
pation increases.

The orbital dynamics code we use has been written in the framework of the constant
time lag model. This model is very practical to compute orbital evolution, we thus want to
continue using it. However, we now allow the dissipation o, (normalized bulk dissipation
per unit mass, as defined in Hansen 2010) to vary while the star evolves. The dimensionless
0, is linked with the dissipation factor o, and the time lag by the following formula:

2G 1
3R 0p’

: (N

Gy = 0,/00 = k3 AT,

®)

where o¢g = 1/Q/(M@Ré) (Hansen 2010; Bolmont et al. 2015). In Bolmont et al. (2012),

o, was considered constant throughout the evolution, which meant that k%Ar* was actually
evolving along with the radius of the star.

In order to incorporate the formalism from Mathis (2015b) in the framework of the constant
time lag model, one needs to express the time lag At as a function of the equivalent lag
angle 8. As discussed by Leconte et al. (2010), this is not straightforward in the general case.
Indeed, introduced equivalent tidal angle and quality factor are related to frequency-averaged
quantities computed in the Fourier space while the constant time lag model is a model using
quantities in real space such as bodies’ position and velocity. We first do the approximation
that the lag angle 6 is small so that sin [2ﬂ ~ 28. Besides,

28 = wAT, ©)

where w is the tidal frequency. In the general case of an eccentric orbit, several tidal fre-

quencies would have to be taken into account and it would become necessary to have several

terms associated with each Fourier mode. However, in the simplest case considered here of

a circular orbit, there is a unique frequency @ = 2|n — §2,|. Consequently, the time lag is

given by:

. 5 . 3 _ 3¢e?
In—$.  4Q'In— .| 40QiIn— .|

A, (10)

We recover the fact that when Q/, is small, Az, and &, are big and consequently the tidal
evolution timescales are shorter. As in Mathis (2015b), we see that the higher the spin of the
star, the higher the dissipation 1/Q’ or .

Note that for n = §2,, there is a non-physical singularity intrinsic to the definition of the
constant time lag model given in Eq. (9) which is here the price of a lighter computation.
It would be possible to avoid it as soon as the full complex frequency-dependence of tidal
dissipation will be taken into account. Then, it would be possible to define a spectral time
lag At (w) computed directly from Im [k% (a))]. However, the simple and compact equations
derived by Hut (1981) would have to be abandoned in favor of a fully spectral treatment of
dynamical equations (Mathis and Poncin-Lafitte 2009; Remus et al. 2012a; Ogilvie 2014)
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needing potential heavy computations. In this first qualitative work, to be able to continue to
use the compact formalism, we choose to smooth out the artificial singularity by using the
following formula:

1)

Aty = —m8 —————
max [|n — £2,], p]

D
where p is a regularization value to avoid the singularity. o has the dimension of a frequency.
We tested p = 1078 s™1 and p = 10~% s~! and qualitative differences appear for the most
extreme cases initially close to the corotation radius: a planet initially at corotation can fall
on the star in one case and survive in the other. However for most cases, the evolution is
qualitatively similar, although not exactly quantitatively similar.

2.1.2 Tidal secular evolution

Thanks to this method linking the equivalent modified quality factor to the time lag (or to the
dissipation factor o, ), we are able to simulate the tidal evolution of planets using the constant
time lag formalism (Mignard 1979; Eggleton et al. 1998; Bolmont et al. 2011). Taking into
account here only the stellar tide, the secular tidal evolution of the semi-major axis a is given
by:

1 da 1

e ——[Nal(e) - &Naz@] (12)
a dt T* n ’

where the dissipation timescale 7, is defined as

1 M, a® 1

2 a4 2 13
9 Mp(M, + M,) RO o, (1)

T,

and depends on the stellar mass M,, its dissipation o, and the planet mass Mp. Nal(e) and
Na2(e) are eccentricity-dependent factors, which are valid even for very high eccentricity
(Hut 1981):

14 31/2¢% +255/8¢* + 185/16¢° + 85/64¢°

Nal(e): (1_62)15/2 s
1+ 15/2¢% + 45/8¢* + 5/16¢€°
Nad(e) = LH 12+ /8¢ +5/16e7
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In the present case, as the orbits we consider are circular, Nal(e) = Na2(e) = 1.

In our model, the planets are driven by the dynamical tide when Py, > 1/2P, and by
the equilibrium tide when P, < 1/2P,. When the equilibrium tide is driving the evolution,
the dissipation factor is taken to be the normalized bulk dissipation per unit mass o, for a
1 Gyr star and a tidal period of 1 day given in Hansen (2012). This equilibrium tide factor
is given in Table 1 for the stars considered in this work. When the dynamical tide is driving
the evolution, the dissipation factor is obtained using Eqs. 8—11.

2.1.3 Stellar wind

We also take into account the spin down of the star due to the stellar wind. As in Bouvier et al.
(1997), we assume that the stars considered here rotate as solid bodies, although more recent
work has included the effect of internal differential rotation between the radiative core and the
convective envelope (e.g., Bouvier 2008; Gallet and Bouvier 2013; Penev et al. 2014; Gallet
and Bouvier 2015). The wind braking processes at work for a Sun-like star are the same as
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Table 1 Stellar parameters

Mass Initial time Equilibrium tide Initial rotation
(Mg) (Myr) dissipation o, (day)

0.6 8.2 2.1x 1070 1.2/3/8

1 5 3% 1077 1.2/3/8

12 5 7.8 x 1078 1.2/3/8

for other low-mass stars (Matt et al. 2015) so we consider the same wind parametrization for
all stars. We use here the torque formula from Bouvier et al. (1997) with updated estimates
for the saturation spin wy,, from Matt et al. (2015). In this work, M, is held constant, and
the effect of mass loss (through processes like stellar winds) on the internal structure of the
star is considered negligible.

Our calculations begin during the stellar Pre Main Sequence (PMS). As in Bolmont et al.
(2012) we use the “disk locking” parametrization (e.g., Bouvier et al. 1997; Rebull et al.
2004, 2006; Edwards et al. 1993; Choi and Herbst 1996), which consists in assuming that
the rotation period of the star remains at an initial constant value for a given time (hypothesized
to be associated with the time of disk dissipation). After this time, the spin of the star evolves
from this initial value depending on its radius contraction rate and the influence of the stellar
wind. We thus start our calculations at the moment of “disk dispersal” and we consider that
the planets are fully formed at that point.

One goal of the present work is to determine how different stellar spin and dissipation
histories influence the star—planet tidal interaction. To this end, we consider three different
stellar masses: 0.6, 1.0 and 1.2 M and consider an initial spin rate of P, o = 1.2 day, which
corresponds to the fast envelope of the observed stellar spin distribution (Bouvier et al.
1997). In Sect. 4.2, we consider other initial spin rates: P, o = 8 day, which corresponds to
the slow envelope of the observed stellar spin distribution and an intermediate initial spin
rate: P, o = 3day.

As in Bolmont et al. (2012), we consider both the influence of tides and the stellar wind
on the rotation of the star. The expression for the angular momentum loss rate is (Kawaler
1988; MacGregor and Brenner 1991; Bouvier et al. 1997):

1dJ =1, s, (RNP (M N\
77:71{9*0)?0[ e Y
Jdr —J st \ Ro Mo

Ll

J 2T,

|:N01(e) - &NOZ(E)] , (14)
n

where £ is the orbital angular momentum, »n is the mean orbital angular frequency, T, is the
stellar dissipation timescale defined in Eq. (13), and the functions Nol and No2 are defined
as:

14 15/2¢% +45/8¢* 4 5/16¢°

Nol(e) = 1 —e)p ,
1+ 3e2 4 3/8¢*
No2(e) = —l—e——l—/e
(1—e?)’

In the present case, as the orbits we consider are circular, Nol(e) = No2(e) = 1.
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Fig. 1 Evolution of radius, rotation period and dissipation of the different stars for a 1 Mg planet at 1000 AU,

and timescales evolution. a Top evolution of the radius of the star. The present radius of the Sun is represented
by a black dot. Bottom evolution of the rotation period of the star. The present rotation period of the Sun

is represented by a black dot. b Top the equivalent modified quality factors Qf (full lines) and Q' (dashed-
dotted lines). Middle the corresponding dissipation factor o, (dynamical tide dissipation in full lines, constant
equilibrium dissipation in dashed lines). Bottom Evolution timescale 7, for the three stars but for a 1 Mg
planet at 0.026 AU (dynamical tide evolution in full lines, constant equilibrium tide evolution in dashed lines).
The vertical dashed lines correspond to the initial time considered in our simulations. These simulations were
done with a regularization value p of 1075 s~ 1. The initial rotation period of the stars is 1.2 day

Here K, and w;g,; are parameters of the model from Bouvier et al. (1997). We use the
value of K = 1.7 x 10¥7 cgs for all stars and we choose wg,; from Matt et al. (2015) so that:

Wsqt = 3.1 2o, for M, = 0.6 My
Wsaqr = 9 .Q@, for M* =1.0 M@ .
wsar = 31 2o, forM, =12 Mg

Bouvier et al. (1997) showed that for fast rotators (£2, > wsar), 4 = 1 and for slow rotators
(824 < wgar), b = 3.

2.1.4 Evolution of stellar rotation period and dissipation

Figure 1 shows the evolution of the radius and rotation period of the star, as well as the
structural equivalent quality factor Q/ and its counterpart Q' (cf Eq. 7), and the normalized
dissipation factor o, for the three different stars considered here: M, = 0.6 M, 1 M and
1.2 M. All stars have an initial rotation period of 1.2 day. For the last panel of Fig. 1b),
we simulated the evolution for two cases. Either the evolution is driven following our model
(full lines) or the evolution is solely driven by the equilibrium tide with a constant dissipation
(dashed lines, as in Bolmont et al. 2012). Table 1 shows the stellar parameters used in this
work.

@ Springer



284 E. Bolmont, S. Mathis

These evolutions were calculated for a 1 Mg planet orbiting the different stars at a semi-
major axis of 1000 AU, which means that the influence of the planet on the evolution of the
star is negligible. Besides, the planet is so far away from the star that it does not actually
tidally evolve in the 5 Gyr timescale of the simulation. Consequently, this allows us to see
the variation of the dissipation in the star due to its structural evolution. Besides, in this
configuration where the planet is very far away, the planet following our model is always
evolving due to the dynamical tide (P, is always higher than 1/2 P,). The tidal frequency
can be here approximated by ~2£2,.

Table 1 also shows the initial time we consider for the beginning of our simulations.
This initial time corresponds to the time of disk dissipation, when the disk no longer has an
influence on the dynamical evolution of the planets. For M, = 1 Mg and M, = 1.2 Mg, the
initial time is taken to be 5 Myr, however for M, = 0.6 M, itis taken to be 8.2 Myr. The lower
the mass of the star, the later the radiative core appears. For a star of mass M, = 0.6 M, this
happens at an age of 8.2 Myr. Before the apparition of the radiative core, the inertial waves
propagate in a fully convective sphere and cannot reflect in a way that leads to the formation
of sheared waves attractors that may lead to strong dissipation (Ogilvie and Lin 2004, 2007);
the dissipation is therefore very weak and the equivalent modified quality factor very high.

Figure 1 shows that the spin of the stars evolves accordingly with the observations (Matt
et al. 2015). Indeed, for M, = 1 M, we reproduce today’s Sun rotation period (the dot in
Fig. 1). For M, = 1.2 M, the rotation at 5 Gyr is comparable to that of the Sun, while for
M, = 0.6 Mg it is slower.

Figure 1 also shows that the values of the dissipation &, in our model are in agreement with
the equivalent modified quality factor Q from Mathis (2015b). Indeed, during the PMS stage
the dissipation of the high mass stars is higher than that of the low mass stars (Q/, decreases
with mass) but during the MS stage the dissipation of the low mass stars is higher than the
dissipation of the high mass stars (Qig increases with mass). The dissipation factor o, evolves
on the one hand due to the changes of the structural equivalent modified quality factor E@,
and on the other hand due to the changes in the spin of the star (through the parameter €).
Figure 1 also shows the evolution of Q’, which encompasses both effects.

Ferraz-Mello etal. (2015) gives the value of Q for anumber of observed planetary systems.
Among them, the system of CoRoT-33 (M, = 0.93 M) allows us to compare our value of
the tidal quality factor Q with the value of Q = 6 x 106 given by Ferraz-Mello et al. (2015).
The orbital period of the brown-dwarf companion is Py, = 5.81 day and the rotation period
of the star is P, = 8.95 day, so the evolution of this system is driven by the dynamical tide. If
the star is on the main sequence, our model gives a value of the structural tidal quality factor
of Q) = 10%. From the rotation period of the star and Eq. 7, we can thus infer a value of Q’ of
5.9 x 10°. The value given by Ferraz-Mello et al. (2015) is between 2.5 and 4.5 x 107, which
is about 4-8 times higher than ours. This difference could be due to the strong dissipation of
the inertial waves in the bulk of the convective envelope along wave attractors.

Let us consider M, = 1 Mg. At first Q) decreases and the rotation increases which
has the effect of increasing the dissipation o,. Then, from a age of 10 Myrs, E increases
but the rotation still increases sufficiently so that the dissipation increases for about another
~ 5 Myr. From ~15 to ~35 Myr (i.e., when the star reaches the MS), the dissipation o,
decreases because the spinning up of the star brakes down and Q7 still increases. Then, from
~35 Myr to the end of the simulation, a; is constant and the dissipation o, decreases slowly
due to the spinning down of the star.

For a star of M, = 0.6 M, the increase of the dissipation is more pronounced due to
the fact that the star spins up longer and faster and also that Q/, does not evolve as much as
for the Sun-like star. However, for a star of M, = 1.2 M, the increase of dissipation is less
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pronounced because it does not spin-up as much as the Sun-like star and Q/ decreases by
almost 2 orders of magnitude when reaching its minimum in the PMS.

Finally, Fig. 1b also shows the evolution of the tidal timescale 7, (Eq. 13) fora 1 Mg
planet at 0.026 AU (fixed semi-major axis) around the different stars. The timescale T, was
computed for two cases: due to the dynamical tide (regardless of the domain of validity,
represented in full lines in Fig. 1b) and due to the equilibrium tide (dashed lines). For this
last panel, we do not consider the case of the planet at 1000 AU because its tidal evolution
timescale would be much larger than the age of the universe. This last panel of Fig. 1b is
to show the typical evolution of the tidal timescale with the structural evolution of the star.
For all stars, the equilibrium tide evolution timescale (dashed lines) increases with time due
to the shrinking of the radius. It decreases with increasing stellar mass, due to the higher
stellar radius for higher masses. The dynamical tide evolution timescale also increases with
time, but this time its evolution is not solely linked to the evolution of the radius, but also the
evolution of o, (or @, or Q and £2,). The evolution timescales reaches with a plateau more
or less pronounced corresponding to the moment where the structural equivalent modified
quality factor Q/, becomes constant.

The comparative evolution of the timescales depending on the mass of the star is not
straightforward because it depends on a lot of parameters: the structural evolution of the star,
through the radius and ag and also on the spin. Nonetheless, we can see that in the beginning
and in the end of the stellar evolution considered here, 7, decreases when increasing stellar
mass. In the beginning of the evolution, T, is smaller for 1.2 M because of both the higher
dissipation @, (or lower Q') and the higher radius, while from 4 to 5 Gyr, despite a smaller
dissipation oy, T, is smaller for 1.2 M only because the radius is much bigger than the 0.6
and 1 M, stars.

3 Orbital tidal evolution

We therefore investigate how this new model impacts the orbital tidal evolution of planets
compared with the standard equilibrium tide model of Bolmont et al. (2012). We consider
planets from 1 Mg to 1 My, orbiting the three different stars considered here.

3.1 Evolution of planets orbiting 1 Mg

Figure 2 shows the tidal evolution if the system was evolving solely due to the equilibrium tide
(dashed lines) and if it was evolving following our model (full lines). In the latter scenario,
the planet evolves due to the dynamical tide during the first few 100 Myr of its evolution
(when Py > 1/2P,). When the star has spun down sufficiently, so that the orbital period
becomes less than half the stellar rotation period, the equilibrium tide takes over and the
dissipation o, decreases to the value of Hansen (2012).

For planets closer than 0.03 AU, the difference between an evolution driven by the equi-
librium tide and an evolution driven by the dynamical tide is clearly visible. For a planet of
1 Mg, due to the very low dissipation, the equilibrium tide does not cause any significant
migration. However, as the dynamical tide is responsible for a dissipation factor higher by
several orders of magnitude than the equilibrium tide dissipation, the planet experiences a
faster migration. This means that the planet is much more sensitive to the rotation period
evolution of the star: planets interior to the corotation radius will migrate inward, while those
exterior to the corotation radius migrate further outwards than before.
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Fig. 2 Tidal evolutionof a 1 Mg
planet around an evolving 1 Mo
star. The evolution calculated
with the equilibrium tide model
using Hansen (2012)’s dissipation
factor (see Table 1) is represented 001 E
in dashed lines. The evolution
calculated with our model of the
dynamical tide is represented in
full lines. Top evolution of the
semi-major axis of the planets
(colors), corotation radius of the
star (bold black dashed lines) and
the line defining Poipy = 1/2Px
(thin black dashed lines). Middle
rotation period of the star, the
rotation of the Sun at present time B
is represented with a black dot.
Bottom evolution of the
normalized dissipation factor o. :
These simulations were done 2
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of 1078 57! Age - tinic (yr)
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Figure 2 shows that the rotation period of the star is not particularly influenced by the
planet. Except from a small deviation around ¢+ = 1 Myr due to the passage of the planet
through corotation, the spin of the star follows the same evolution for all planets and the
rotation tends to that of the Sun at present day (as observed for example for KOIs, see e.g.
Ceillier et al. 2016).

For the innermost planet, we notice the same kind of behavior that was first observed
by Bolmont et al. (2011) of inward migration followed by outward migration as the planet
crosses the shrinking corotation radius. This planet was “saved” from falling onto the star
by the spinning-up of the star. Later on in the evolution, the planet crosses once more the
expanding corotation radius. However, as the dissipation is lower at that time because of the
evolution of j@ and of the rotation, no significant orbital changes are visible. As discussed
in Sect. 2.1.1, note that when the planet crosses corotation the dissipation increases.

In this framework, we investigated the influence of the parameter p that smoothes the
divergence when n = £2, (Eq. 11) and for most cases it is negligible. In some cases, massive
planets located very close to the corotation can either survive and migrate outward when
p = 107> 57!, or migrate inward and fall onto the star when p = 1078 s~!. Apart from these
very specific cases, the difference in p only influences slightly the final semi-major axis (less
than a percent).

When increasing the mass of the planet, the tide raised in the star is bigger and the planets
migrate outward farther away. Figure 3a shows the evolution of a 10 Mg planet. The planets
experiencing outward migration migrate from ~ 0.02 AU to semi-major axes bigger than
0.03 AU. The two planets beginning below the corotation radius migrate inwards. The inward
migration happens in three steps. The first one is due to the dynamical tide which very quickly
makes the planet migrate to the limit Py, = 1/2 P, (thin black dashed lines in Fig. 3a). Once
the planet reaches this limit, after a few thousand hundred years, the equilibrium tide drives
the evolution with a much lower dissipation. The planets’s inward migration then occurs on
a much longer timescale. However the star continues spinning up so that P, decreases on
shorter timescales than Py, does. When 1/2 P, becomes smaller than Py, the dynamical
tide drives the inward migration once more until Py, = 1/2 P,. Consequently, the dissipation
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Fig. 3 As Fig. 2 but for a a planet of 10 Mg and b a planet of Mjyyp

in the star jumps back and forth from the dynamical value to the equilibrium value and the
planet stays on the limit Py, = 1/2 P, for a few million years. Figure 3a shows this behavior
but the sampling of our outputs does not allow to see the dissipation jumping more than once.
In the end, the planet migrates inward sufficiently due to the equilibrium tide to escape this
blockage and collide with the star in less than 100 Myr.

When increasing even more the mass of the planet, for example to M, = 1 My, the
planets initially outside the corotation radius migrate even farther away. Figure 3b shows that
typically for a star with an initial rotation period of 1.2 day, the planets migrate from ~0.02
to 0.05 AU in a Gyr or so. For Jupiter mass planets, there is a huge difference in the evolution
following our model including the dynamical tide and the evolution due to the equilibrium
tide. Planets beginning just outside the corotation radius fall onto the star in a few Gyr when
evolving due to the equilibrium tide. As the equilibrium tide evolution timescale is very long,
the planets are not sensitive to the initial spin of the star. Their tidal evolution is noticeable
only when the star has already spun down significantly. However, when evolving due to the
dynamical tide, they survive and migrate to 0.05 AU.

As discussed in Bolmont et al. (2012), when the planet falls at late ages onto the braking
star, it entails an important spinning-up of the rotation. However, with our new model, the
planets falling onto the star do so very early in the stellar history so that the spin history of
the star is not altered significantly (see Sect. 4).

3.2 Evolution of planets orbiting other stars

Figure 4 shows the evolution of a planet of 2 Mg, (4a) and 1 My, (4b) initially orbiting each
of the three different stars outside of corotation.

For low mass planets, the evolution does not depend a lot on the star, they do not migrate
very far away from the star. For a planet of mass 2 Mg, a difference can be seen between the
lowest mass star and the two others. Figure 4a shows that the dissipation of the 1 M, star is
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Fig.4 Tidal evolution of aa2 Mg planet and b a Myyp planet initially at 0.028 AU around the different stars.
The initial time for the simulations are: 8 Myr for 0.6 Mg and 5 Myr for 1 M and 1.2 M. Top evolution of the
semi-major axis of the planets (full lines), corresponding corotation radius (bold dashed lines). Middle rotation
period of the star, the rotation of the Sun at present time is represented with a black dot. Bottom evolution
of the normalized dissipation factor o, (full lines) and the equilibrium tide dissipation factor (dashed lines).
These simulations were done with a regularization value p of 1078 s~

very similar to the dissipation of the 1.2 M, star for the first million year of the evolution
(which can also be seen in Fig. 1). Consequently, the planets orbiting these two stars undergo
a very similar evolution. The difference in the dissipation of the 1 M, star and the 1.2 Mg
occurring after one million year is not sufficient to cause a difference in the orbital evolution.

However, the dissipation of the 0.6 M, star is initially one order of magnitude smaller than
the two other stars. After a few million years and for the rest of the evolution, the dissipation
of the 0.6 M becomes more than one order of magnitude higher than the two other stars.
However, the tidal evolution timescale does not only depend on the dissipation of the star
but also on its radius. Equation 13 shows that the smaller the radius of the star, the longer
the evolution timescales. Thus, despite a higher dissipation, the tidal evolution around the
0.6 Mg star occurs on longer timescales than the more massive stars.

For high mass planets, such as the Jupiter-mass planet of Fig. 4b, the migration occurs
on shorter timescales as discussed in the previous section. The difference between a star
of 0.6 Mg and the two more massive ones is more pronounced. The planet orbiting the
lowest mass star migrates outward less than for the other stars but does so for a longer time.
This is due to the smaller radius of the 0.6 M, star which does more than compensate the
higher dissipation. Due to the increase of the dissipation happening in the first few 107 yr of
evolution, the migration of the planet first accelerates. Then as the dissipation o, stabilizes,
the migration decelerates due to the increase of the semi-major axis and the consequent
increase of the evolution timescale.

The evolution of the planet orbiting the 1 M star is slightly different than the one orbiting
the 1.2 Mg star. Migration initially happens faster around a 1.2 M, star than a 1 M, star
because the radius of the higher mass star is bigger (their dissipation being of the same
order of magnitude). However as time passes, the evolution timescale of the planet orbiting
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the 1.2 M, star increases first because the planet migrates outward and second because the
dissipation o, decreases by almost two orders of magnitude. In the end, the outward migration
stops around an age of 30 Myr at a semi-major axis of ~0.05 AU. For the 1 M, star, the
combination of a smaller radius and a higher dissipation leads to a slower evolution on a
longer time so that the planet reaches ~0.05 AU around an age of ~200 Myr.

4 Rotational evolution of the host star

During their orbital evolution, the planets influence the rotation of their host star. This influ-
ence is more or less visible depending on the initial semi-major axis and the mass of the
planet. One extreme exemple can be seen in Figure 3b, when the evolution is driven by the
equilibrium tide. The close-in planets collide with the star in a few gigayears and this entails
an acceleration of the rotation of the star (see Bolmont et al. 2012, for a description of this
phenomenon). However, when the evolution is calculated with our model and the star is
initially rotating fast, the influence is less visible as it leads to much less collisions.

4.1 Influence of the planet on the rotation of the star

We investigated the influence of the planet on the rotation of the star for each star considered
here. In order to quantify the effect of the planet on the spin of the star, we introduce the
quantity § P defined as follows:

SP = P*,tideszon, t=5 Gyr — P*,tides:of‘f, t=5 Gyr» (15)

where Py tides=on, t=5 Gyr 15 the rotation period of the star at an age of 5 Gyr for simulations
with our tidal model and P, tides=off, t=5 Gyr is rotation period of the star at an age of 5 Gyr
for simulations with only the influence of the wind-braking.

Figure 5 shows the variation of this quantity with the mass of the planet, for different initial
semi-major axes: 0.024, 0.026, 0.028, ..., 0.040 AU and for the 3 different stars considered
here. Only the spin of the stars whose planets have survived the 5 Gyr evolution is plotted.
As the star considered here is an initially fast rotator, the planets considered here all migrate
outwards during their evolution. We discuss in the following section what happens when the
planets fall towards the star, which occurs when the star is an initially slow rotator. We find that
the more massive the star, the less influence the planet has on the stellar spin evolution; and
the more massive the planet, the more influence the planet has on the stellar spin evolution.
We retrieve here the signature of the applied torque, which scales for a circular orbit as
(Mp/M*)ZM*RE (R,(/a)6 (£2, —n) (Zahn 1989). The planets have here the effect of slowing
down the rotation of the star. For planets less massive than 10 Mg, the effect of the planet
on the spin of the star is negligible. For M, = 10 Mg, the difference at 5 Gyr is of a few
hours, while for Mp = 1 My,p = 317.8 Mg it can reach several days. A hot Jupiter around
an initially fast rotating Sun-like star can slow down the rotation of its star by a day.

We can see that § P is bigger for a Jupiter-mass planet orbiting a 0.6 M, star, where the
difference can be up to 3 days for the close-in planets. With such a difference, the influence a
planet has on the stellar spin can be potentially measured. Indeed, high resolution photometric
space missions such as CoRoT (Baglin et al. 2006) and Kepler (Borucki et al. 2010) allows
us to precisely measure stellar rotation (a sensibility up to 10 % of the rotation period; e.g.
Garcia et al. 2014) and to test proposed gyrochronology relationships (e.g. Gizon et al. 2013;
McQuillan et al. 2013; Paz-Chinchén et al. 2015; Ceillier et al. 2016; van Saders et al. 2016).
For example, Ceillier et al. (2016) demonstrated that the rotation of KOIs hosting low-mass
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planets are the same, up to the observational sensitivity, that assumed single similar solar-type
stars. This result is coherent with our theoretical prediction.

4.2 Influence of initial rotation spin

Bouvier et al. (1997) were considering two populations of stars which are thought to bracket
to the possible state of stars just after the disk dissipation: the initially fast rotators (Py,0 =
1.2 day) and the initially slow rotators (P, o = 8 day). Following Bolmont et al. (2012),
we investigated here the influence of the initial rotation spin of the star on the outcome of
the planets considering an initially fast rotator (P, o = 1.2 day), an initially slow rotator
(P,,0 = 8 day) and a star with an intermediate initial spin (P, ¢ = 3 day). Figure 6 shows the
evolution of a Jupiter-mass planet orbiting the three different stars and for the three different
initial stellar rotation periods. The planets initially around faster rotating stars migrate farther
away and the more massive the star, the bigger are the differences between the different stellar
initial spins.

For 0.6 M, the planets initially closer than 0.05 AU undergo a different evolution depend-
ing on the initial rotation state of the star. It is especially true for the innermost planet: it
survives and migrates outward for P, o = 1.2 day, it falls onto the star for P, o = 3 day and
it does not experience significant orbital migration for P, o = 8 day. For P, o = 1.2 day,
it is initially exterior to the corotation distance and in the region where Py > 1/2P, so it
rapidly migrates outward due to the dynamical tide. However, for P, o = 3 day, it is initially
interior to the corotation distance so it migrates inward and as it is also in the region where
Py < 1/2P,, the equilibrium tide is initially driving the evolution. However as the star spins
up, the planet reaches the limit Py, = 1/2 P, and the dynamical tide takes over. The planet
stays for a few 10 million years on the limit Py, = 1/2 P, following the mechanism intro-
duced in Sect. 3.1 before falling onto the star. Note that while falling onto the star, the planet
makes the star spin up, which is visible on the second panel of Fig. 6¢c with the dark green
dashed line. Finally for P, o = 8 day, the planet is initially interior to the corotation radius so
it migrates inward, however contrary to the previous case the star does not spin up enough, so
that the condition Py, = 1/2P, is never met. The planet therefore evolves solely due to the
equilibrium tide, and as the equilibrium tide dissipation is small, the evolution timescales are
very long and the planet essentially remains at its initial semi-major axis. For planets farther
away, the only difference between the different stellar initial spins is the final semi-major
axis. This qualitative difference vanishes for planets initially at more than 0.05 AU.
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Fig. 6 Tidal evolution of a My, planet aroundaa 0.6 Mo, b 1 M, ¢ 1.2 M star for different stellar initial
rotation periods: 1.2 day (full lines), 3 day (dashed lines) and 8 day (dashed-dotted lines). The initial time for
each of the simulations is represented in thin vertical black dashed lines. Top evolution of the semi-major axis
of the planets (green to blue lines), corresponding corotation radius (red lines). Middle rotation period of the
star, the rotation of the Sun at present time is represented with a black dot. Bottom evolution of the normalized
dissipation factor o, (full lines) and the equilibrium tide dissipation factor (dashed lines). These simulations
were done with a regularization value p of 1075 57!

When the planet evolves due to the dynamical tide, the dissipation &, follows the same
kind of evolution independently of the initial stellar rotation. However there is a quantitative
difference due to the difference of spin (Eq. 10), which entails an order of magnitude of
difference for o, between the fast rotator and the slow rotator. Planets orbiting the slow
rotating star (P, o = 8 day) leave the region Py, > 1/2P, earlier in the evolution of the star
than for the other stars. In the end, the evolution around slowly rotating stars is slower for
two reasons: the slower rotation and the fact that the dynamical tide drives the evolution for
a shorter time.

The higher the mass of the star, the higher the corotation radius for the same initial rotation
period. Consequently the close-in planet (at 0.02 AU), which was just outside the corotation
radius when orbiting the 0.6 M star initially rotating at P, o = 1.2 day, is just inside
the corotation radius when orbiting the 1.0 M, star initially rotating at P, o = 1.2 day.
Consequently, the planet falls onto the star. And it does so independently of the initial stellar
spin. The only difference is that the faster the star is rotating, the quickest the planet falls:
about 1 Myr for P,y = 1.2 day, a few 10 Myr for P, = 3 day and a few 100 Myr
for P,o = 8 day. For farther out planets, the only difference is the final semi-major axis,
which is clearly visible for the planet beginning its evolution at 0.036 AU. Indeed, this
planet migrates slightly inward for P, o = 8 day, it migrates outward up to 0.04 AU for
P, o = 3 day, and up to 0.05 AU for P, o = 1.2 day. Planets initially farther than 0.07 AU
undergo the same evolution (= no orbital evolution) independently of the initial rotation state
of the star. For a star of 1.2 M, the differences with 0.6 M, are even more marked. Due to the
higher mass and consequent increase of the corotation radius the planet initially at 0.036 AU
experiences different evolution depending on the initial spin: it survives and migrates away
when P, o = 1.2 day, it falls onto the star when P, o = 3 day and migrates in on a gigayear
timescale when P, o = 8 day.

Figure 6 also shows that hot Jupiters can be found at small orbital distances around ini-
tially slow rotating stars. If formation mechanisms in the protoplanetary disk allow to form
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hot Jupiters equally around all three types of stars, we therefore find that they are more
likely to survive on gigayear timescales around low-mass stars rather than higher mass stars.
This statement is in contradiction with the observations that show that the occurrence rate
of hot Jupiters around low mass stars is very low (e.g. Bonfils et al. 2013). The difference
in the occurrence rate of hot Jupiters around low mass stars compared to Sun-like stars must
therefore depend on tidal dissipation in the stellar radiative core (Guillot et al. 2014) or on
formation mechanisms rather than on the following tidal evolution related to the dissipation
in the convective envelope. For an initially slowly rotating 1 Mg star, Jupiter mass plan-
ets survive a 5 Gyr evolution if they start their evolution at a semi-major axis bigger than
0.028 AU. However these planets would be currently migrating towards the star. For exem-
ple, the orbit of a hot Jupiter beginning at 0.028 AU around an initially slowly rotating star
shrinks to 0.024 AU after ~5.3 Gyr of evolution.

Due to tidal interaction, the massive planets either fall or migrate away. When falling onto
the star, the planets make their host star spin-up. This phenomenon was discussed in Pont
(2009) and Bolmont et al. (2012). Figure 7 shows the evolution of the semi-major axis of
planets orbiting a 1 M, star with an initial rotation of 8 day, as well as the evolution of the
corresponding stellar spin. The planets can be sorted into two populations: three planets are
falling onto the star and three planets survive the 5 Gyr evolution. Among the three falling
planets, two of them fall onto the star in less than 2 Gyr, making the star spin up significantly.
For example, the planet falling when the star is 2 Gyr makes the star spin up to ~7 day, when
it should have had a rotation of ~20 day. The planet which is still falling at an age of 5 Gyr
is responsible for an spin-up of about 8 day with respect to the “normal” rotation period at
that moment. This difference will increase as the planet continues falling towards the star.

The ingestion of planets by the star has been one explanation proposed for the observed
dearth of close-in planets around fast rotating stars (see (McQuillan et al. 2013) for the
observational aspect and (Teitler and Konigl 2014) for a theoretical explanation using a
standard equilibrium tide model). An alternative explanation based on a combination of
secular orbital evolution in a multiple planet system and tides was suggested by Lanza and
Shkolnik (2014). They showed that around old stars—and thus according to gyrochronology
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slowly rotating stars—planets initially far away and excited on a very eccentric orbit could
have had time to be tidally circularized on short orbits. We show here that due to the stronger
tidal dissipation induced by dynamical tide, this observed dearth can also be partly accounted
by the outward migration of the planets which depletes the inner parts of a system. We will
investigate in the future the effect of this higher dissipation on the evolution of multiple planet
systems using the Mercury-T code (Bolmont et al. 2015).

5 Conclusions

We present here a new tidal model, which constitutes a first step in the endeavor to reconcile
two tidal formalisms. This improvement constitutes a first step because (1) it is using an
averaged model for the quality factor of the star (see Mathis 2015b) and (2) it is only valid for
non-inclined circular systems. This new model takes into account the effect of the dynamical
tide, and more specifically the evolution of the dynamical tide-induced dissipation in the
convective envelope over the evolution of the host star.

We found that due to the consequent enhanced dissipation compared to a standard equi-
librium tide dissipation, the planets experience a more pronounced tidal orbital evolution.
For example, a Jupiter mass planet orbiting a fast rotating star can migrate from ~0.02 AU
to 0.05 AU when its evolution is due to the dynamical tide instead of falling onto the star
when its evolution is due to the equilibrium tide. This changes the conclusions of the work
of Bolmont et al. (2012) and underlines the need to incorporate better tidal models in orbital
dynamics codes.

We found that the planets have behaviors more similar to what was first introduced in
Bolmont et al. (2011) than to what was shown in Bolmont et al. (2012). This means that
the dynamical tide is strong enough so that planets can be influenced by the early age spin
evolution of the star. Indeed, a planet with an initial orbital distance much smaller than
the corotation radius will migrate inwards to eventually fall onto the star. A planet initially
exterior to the corotation radius will migrate outward. Finally, a planet initially interior to
the corotation radius but sufficiently close to it can be saved by the spin-up of the star during
the PMS phase (and the consequent shrinking of the corotation radius).

We also found that planets initially interior to the corotation radius fall onto the star in
three steps. First, the dynamical tide brings the planet to the limit Pop, = 1/2P,. Second,
a competition between the acceleration of the rotation of the star and the equilibrium tide-
induced inward migration causes the planet to remain at Py = 1/2P,. Third, when the
planet has sufficiently migrated inward, the equilibrium tide is strong enough to make the
planet fall onto the star.

We investigated the influence of the initial spin of the star on the orbital evolution of the
planets and we found that for a Jupiter-mass planet the tidal evolution around a star initially
rotating at P, o = 1.2 day, 3 day and 8 day is different if the planet is closer than ~0.07 AU.
Depending on the initial spin, a close-in planet can either fall onto the star, migrate outward
or not experience any significant orbital evolution. For a planet of 1 Mg, this limit decreased
to ~ 0.03 AU. We found that “really” hot Jupiters (Por, < 5 day) would be more common
around initially slow rotating stars, and if their formation rate was independent of the stellar
mass, they would be more common around low mass stars. This illustrates the fact that the
scarcity of hot Jupiters around low mass stars may be due to the dissipation in the radiative
core or to formation mechanisms within the protoplanetary disk.
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We found that the planet has a negligible effect on the spin rotation history of the star unless
its mass is higher than 10 Mg. For a 1 M, star, the presence of a hot Jupiter around an initially
fast rotating star can lead to a spin-down of the star of 1 day at an age of 5 Gyr. For an initially
fast rotating 0.6 My star, the spin-down can be up to 3 days. However, when considering
initially slow rotating stars, more planets are engulfed causing a spin-up of the stellar rotation.
Consequently, observations of the spin of stars hosting hot Jupiters for which we know the
age (through another mean than gyrochronology) could eventually tell us something about
the rotation history of the star: if the star is rotating slower than it would without planets, it
means that it was probably initially rotating fast; if however the star is rotating faster than
it would without planets, it means that it was probably initially rotating slow. This can be
now probed thanks to high-precision asteroseismology. Note that the modification of the
rotational evolution of a low-mass star due to the presence of a massive companion may also
have several important consequences. First, because of the applied tidal torque, the angular
momentum redistribution inside the star may be modified in comparison to the case of a
single star (see e.g. Zahn 1992, 1994; Mathis and Zahn 2004; Mathis and Remus 2013;
Amard et al. 2016). Then, internal differential rotation profile may be different, leading to a
different mixing of chemical elements and thus different surface chemical abundances (Zahn
1994). Next, it may affect the magnetic activity of cool and solar-type stars. Indeed, magnetic
fields observed at the surface of low-mass stars are generated by a dynamo action occurring in
their external convective zone, the amplitude, the geometry and the possible cyclic behavior
of the fields being strongly correlated with the mass, the age and the rotation of stars (see
e.g. Charbonneau 2014; Brun 2014).

As explained before, this model is a first step towards a coherent description of tidal
dissipation in orbital dynamics codes. First, as discussed in Sect. 2.1.1, dissipation of tidal
waves in the radiative core of low-mass stars hosting planets as well as the angular momentum
exchanges with the surrounding convective envelope should be taken into account. Next,
additional complex physical mechanisms that may impact tidal flows and their dissipation
such as differential rotation (Baruteau and Rieutord 2013; Favier et al. 2014; Guenel et al.
2016) and magnetic fields (Barker and Lithwick 2014) have to be studied. The same effort
should also be undertaken for planetary interiors to have tidal models taking into account
their structural and dynamical properties (e.g. Correia and Laskar 2003; Ogilvie and Lin
2004; Tobie et al. 2005; Henning et al. 2009; Efroimsky 2012; Remus et al. 2012b; Correia
et al. 2014; Guenel et al. 2014). The second important step, will be to take into account
dependence of tidal dissipation/torques on tidal frequency. It will allows us to treat the case
of eccentric orbits and avoid any singularity of tidal models. Finally, it would be important
to take into account orbital inclination and planetary obliquity (e.g. Lai 2012).

Furthermore, the wind prescription we used in this work (Bouvier et al. 1997) can also be
improved for example by using a more recent parametrization which depends closely on the
structural evolution of the star (Matt et al. 2015) and the geometry of the field (Réville et al.
2015). This would be particularly useful in order to have a more precise insight of the influence
of the planets on the spin history of the star. Finally, we will use our model to try to reproduce
the orbital and stellar spin state of known systems (as was done in Ferraz-Mello et al. 2015,
which found similar results as Bolmont et al. 2012 and in Damiani and Lanza 2015).
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