
5 lectures on 
The Physics

of 
Core-Collapse 
Supernovae



Outline of lecture 4

The Standing Accretion shock instability

characterization in simulations
linear stability analysis
wave coupling
non linear saturation
shallow water analogue
angular rmomentum budget



The Standing Accretion Shock Instability has been found in simulations by Blondin+03
using a 2D axisymmetric stationary flow of a perfect gas γ=1.25 with a cooling function

Instability of the stationary shock even without neutrino heating

The instability SASI in the linear regime is 
-dominated by l=1,2 spherical harmonics
-expoential growth with oscillations with a period~30ms

By contrast, neutrino-driven convection is 
-dominated by smaller angular scales l=5,6
-exponential growth without oscillations

The mechanism has been identified as the interplay of 
advected and acoustic perturbations
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Advective-acoustic cycle in simplified simulations of core-collapse

The feedback region of 
dominant advective-
acoustic coupling is 
identified as the radius of 
deceleration R� where the 
velocity gradients are 
strongest 
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Should we trust the simulations of SASI ?

Validation of the simulations of SASI 
in the linear regime 
(Blondin & Mezzacappa 06, Foglizzo+07, 
Fernandez & Thompson 09)
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Comparing the eigenfrequencies to the 
perturbative approach is a good test of 
the minimum numerical resolution 
required for the linear stage.

The non linear stage can involve 
smaller scales and turbulence which 
can be difficult to capture numerically
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Physical interpretation of the eigenspectrum using wave properties

The calculation of the eigenspectrum solves a differential system 
with a discrete set of complex eigenfrequency. 

It does not provide a physical explanantion

The calculation of wave properties and interactions relies on a 
differential system with a purely real frequency. 

It requires additional approximations compared to the calculation of 
the eigenspectrum

-adiabatic approximation if possible, above the 
cooling layer and below the gain region

-WKB approximation except in coupling regions

-small growth rate compared to the oscillation frequency

These differences are best viewed in the analysis of the spherical 
model and plane parallel toy model (Foglizzo 09)



Advective-acoustic cycle in a decelerated, cooled flow

Unstable advective-acoustic cycle Q>1 
Stable acoustic cycle R<1

Q
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oscillation frequency
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The cycle efficiencies Q(ω), R(ω) can be deduced from the 
oscillations ωi(ωr), or computed in the WKB limit which requires 
rsh>>r� (Foglizzo+07). The two cycles can also be discriminated 
using the frequency spacing of their harmonics (Guilet & Foglizzo 12)

The oscillations 
ωi(ωr) are the 
consequence of 
interferences
between the 
advective-acoustic 
and the purely 
acoustic cyles

The instability 
mechanism for a small 
shock radius is 
extrapolated from the 
mechanism revealed 
by the WKB analysis 
for a larger radius



In a uniform stationary flow, advected and 
acoustic perturbations ignore each other.

If the stationary flow involves gradients, these 
perturbations are linearly coupled

Interaction of advected and acoustic perturbations

Sato+09

The advected perturbations δS and δK are 
source terms in the acoustic equation



Interaction of advected and acoustic perturbations



Both entropic-acoustic and vortical-acoustic linear couplings can be understood intuitively  

Interaction of advected and acoustic perturbations

δm

acoustic emission 
(Foglizzo & Tagger 00)

enthalpyadvection of entropy

« entropic-acoustic » cycle

advection of vorticity

« vortical-acoustic » cycle

The expansion of a gas 
upon an adiabatic 
change of pressure 
depends on its entropy.
Acoustic emission 
compensates for the 
change of advected 
energy: it is proportional 
to the enthalpy variation 
in the stationary flow.

An advected vorticity 
perturbation cannot 
settle without breaking 
the pressure balance: it 
lifts up dense regions 
and push down lighter 
ones.



The vortical motion exchanges deep 
and shallow regions as the perturbation 
is advected over a change of depth

Shallow water analogue of the vortical-acoustic coupling



- advected perturbations
- acoustic feedback

vibrations 
in Ariane 5

Mettenleiter+00

whistling kettle
Chanaud & Powell 65

rumble instability of ramjets
Abouseif+84 

vortical-acoustic cycle

entropic-acoustic cycle

Aero-acoustic instabilities

combustion

nozzle



The planar geometry and uniform flow between 
the shock and the compact deceleration region 
allows for a fully analytic calculation

A planar toy model for the advective-acoustic coupling

region of coupling

advective-acoustic cycle 
efficiency

timescale

purely acoustic cycle 
efficiency

timescale



Explicit analytical expressions for the coupling efficiencies 
for Δz�<<|zsh-z�|

region of coupling

A set of complex eigenfrequencies ω satisfy 
the phase equation relating the two cycles
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The coupling effciencies are defined from the 
ratio of energy densities δf-, δf+, δfadv associated 
to acoustic and advected perturbations
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Rsh, Qsh are deduced 
from the conservation of 

mass, momentum and 
energy fluxes across a 

perturbed shock

R�, Q� are deduced 
from the conservation of 
mass and energy fluxes 

across the compact 
deceleration region



As a vorticity perturbation δw is advected in a 
settling flow, the lifting up of dense regions is 
done at the expense of the kinetic energy of 
the perturbation. The energy of the acoustic 
feedback is thus limited by the kinetic energy 
of the vorticity perturbation.

By contrast the acoustic feedback from the 
advection of an entropy perturbation can 
significantly exceed its internal energy: a small 
entropy perturbation δS can produce a huge
acoustic feedback δp- if the adiabatic increase 
of enthalpy (cout/cin)2 is large enough.

Efficiency of the advective-acoustic feedback from adiabatic gradients 
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The production of vorticity and entropy from an acoustic 
wave reaching the shock can be very large only for a strong 
shock in the isothermal limit 

à

Efficiency of the advective-acoustic coupling

A strong advective-acoustic cycle Q = Qsh Q� >>1 could be fed:
-by a strong vortical-acoustic coupling at the shock Qsh ~ M1

2>>1 
if the shock were isothermal and strong, 

-by a strong entropic-acoustic coupling in the feedback region Q� ~ (ρout/ρin)γ-1 >>1 
if the adiabatic compression were large.

The global efficiency is moderate Q~1-3 in the core-collapse accretion flow (γ~4/3, M1~5, rsh/r�~2-4).
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Interferences between the advective-acoustic cycle 
and the purely acoustic cycle

If Q>>1 the advective-acoustic cyle is so 
strong that the purely acoustic cycle can be 
neglected. However, the contribution of the 
purely acoustic cycle can be decisive near 
marginal stability

In this example, the mode nx=2 would be 
unstable with the advective-acoustic cycle 
alone, but the destructive interference with 
the purely acoustic cycle makes it stable

Conversely, the mode nx=4 would be stable 
with the advective-acoustic cycle alone, but 
the constructive interference with the purely 
acoustic cycle makes it unstable

advective-acoustic + acoustic cycles
advective-acoustic cycle
purely acoustic cycle
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see also Fernandez & Thompson 09



Understanding the efficiency of the acoustic feedback  (Foglizzo 09)

-high frequency perturbations are stabilized by phase mixing 
above the cut-off frequency

-high horizontal wavenumber perturbations correspond to 
higher frequencies. High order overtones produce an 
evanescent pressure feedback which does not affect the shock

à SASI is a low frequency instability dominated by l=1,2

fully 
analytic

M1=5, γ=4/3, Tin/Tout=0.75

oscillation frequency
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The finite lengthscale of the deceleration region 
introduces a frequency cut-off associated to the 
crossing time τ�



The saturation of SASI by parasitic instabilities

entropy-vorticity wave

Rayleigh-Taylor Kelvin-Helmhotz

The entropy and vorticity waves produced by the shock 
oscillations are unstable to parasitic instabilities such 
as Rayleigh-Taylor and Kelvin-Helmholtz.

The advective-acoustic cycle is affected if 
- the parasitic instabilities are able to 
propagate against the flow,

- their effective eulerian growth rate exceeds 
the SASI growth rate

Guilet+10



Two incompressible fluids with uniform velocities v1 and v2

Linearizing, + Fourier transform in time and space: exp(-iωt+ikxx+ikzz)

à à à

à

Boundary condition: continuity of the interface pressure δP at z=δζ

à for a step like velocity profile, the most unstable 
wavelengths are at the smallest scale
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Reminder about the Kelvin-Helmholtz instability
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The instability feeds on the kinetic 
energy gained by smoothing of the 
velocity profile.

Perturbations with a wavelength shorter 
than ~3Δz are stable



Loss of large scale power from the growth of parasitic instabilities Guilet+10

filtered waves (mx=1)full waves

From the linear instability 
mechanism, a short dvection 
timescale both favours SASI 
and stabilizes neutrinbo-
driven convection (χ<3).

From the non linear saturation 
mechanism, large SASI 
amplitudes are expected if the 
advection velocity is high and 
if the cooling processes in 
strong.

The faster the advection, the 
more difficult the propagation 
of parasitic instabilities against 
the flow

The stronger the cooling, 
the more difficult the 
destabilisation of the entropy 
profile by SASI entropy waves



Comparison with numerical simulations

Fernandez & Thompson 09 (no heating)

Guilet+10

No other saturation mechanism has been proposed 
since Guilet+10 

If neutrino heating increases sufficiently, ν-driven 
convection is expected to dominate the SASI:

Linearly, the increased thermal pressure makes the 
flow slower, which is both favourable to convection 
(increases χ) and makes SASI slower (longer τadv)

Non linearly, 
-neutrino heating weakens the stable entropy 
gradient and allows a faster RT growth of parasites 
on SASI entropy waves,
-the slower advection velocity also favours the 
propagation of parasites againt the stream,
-the turbulence driven by small scale convective 
motions acts as a viscous diffusive process for lage 
scale SASI waves.



First 3D simulation: redistribution of angular momentum by the spiral mode of SASI

Even if the progenitor is not rotating, 
SASI is able to spin up the neutron 
star and the ejecta in opposite 
directions.

Blondin & Mezzacappa 07



Formal similarity between SASI and SWASI

accretion of gas on a cylinder

density    , velocity   , sound speed 

inviscid shallow water accretion
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Analogy between hydraulic jumps
and shock

acoustic waves
shock wave
pressure

surface waves
hydraulic jump
depth



The shallow water flow is also described by 2 physical quantities: velocity and depth (no entropy analogue).
Depth plays the same role as the compressibility of a gas (i.e. surface density).
The jump conditions for a hydraulic jump are deduced from the conservation of mass flux and momentum flux. 
Energy is dissipated in a viscous roller within the width of the hydraulic jump.

The Froude number is analogous to the Mach number 

This polynomial of order 3 in Fr3/2 can be factorized by (Fr1
3/2-Fr2

3/2)

Fr2
3/2 is thus a root of a second order polynomial

The jump conditions for hydraulic jumps differ slightly from the gas

For a strong jump: Isothermal shock:
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SWASI: simple as a garden experiment

May 2010

June 2010

October 2010

November 2010
CEA Saclay November 2013



Dynamics of water
in the fountain

diameter 40cm
3s/oscillation

Dynamics of the gas
in the supernova core

diameter 400km
0.03s/oscillation

1 000 000 x bigger
100 x faster



Comparaison to a 2D shallow water model

Foglizzo+12



Parameters of the experiment
Foglizzo+12

at the outer boundary:
-slit size Hinj ~ 0.3-1mm
-flow rate Q ~ 0.7-2 L/s
-rotation rate ~0-0.5Hz à angular momentum

at the inner boundary:
-radius of the accretor Rns=4-6cm
-height of the inner cylinder      à radius of the stationary jump Rjp=15-25cmà Rjp/Rns

à (flow velocity & wave speed) à (Froude number & v/vff) 
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Advantages and limitations of the shallow water analogy

Theoretical framework:
- 2D slice of a 3D flow
- no buoyancy effects
- γ=2
- accreting inner boundary

Experimental constraints:
- viscous drag
- turbulent viscosity
- approximately shallow water
- vertical velocity profile
- hydraulic jump dissipation 3<Fr<8

- simple & intuitive
- explore with an experimental tool
- inexpensive

viscous 
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The inner boundary condition in the shallow water model

The inner boundary is modelled as a critical point of transition from Fr<1 to Fr>1 

The boundary condition can be written immediately ahead of the inner cylinder using the regularity 
conditions required by the pertrubative equations at the critical point Fr=1 and using the continuity of 
the energy density δf and the mass flux δh.

Hedge
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2⇡rnsHedge|vns| = Q,

v2ns = gHedge.



Beyond the shallow water approximation:
phase mixing of dragged vorticity ?

ill-defined vertical structure H(R)
-laminar/turbulent transition ReL~5x105

-vertical extension of the boundary layer
 δjp~2mm if laminar (4.91 L/ReL

1/2)
 δjp~5mm if turbulent (0.38 L/ReL

1/5)

reference examples
-half-Poiseuille:

-turbulent prescription:

2D St Venant
= idealized 

slip condition
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= no slip

ReH ⌘ Hv

⌫
= 796

✓
Q

1L/s

◆✓
20cm

Rjump

◆

= 2650

✓
Q

1L/s

◆✓
6cm

RNS

◆

ReL ⌘ (Rinj �Rjump)
vinj
⌫

= 105
✓

Q

1L/s

◆✓
0.6mm

Hinj

◆

v(z)

< v >
⇠ 3z

2H

⇣
2� z

H

⌘

v(z)

< v >
⇠ 8

7

⇣ z

H

⌘ 1
7

Z H

0

dz

H
cos


!SASI�R

v(z)

�
⇠ 0.27 (laminar)

⇠ 0.52 (turbulent)

Q ⇠The vertically averaged vorticity
is damped by a factor Q



Counter spinning inner regions



The spin up uf the neutron star induced by the spiral mode of SASI

Cylindrical stationary accretion, neutrino cooling mimicked by a cooling function
-the strength of SASI increases with the radius ratio R = rsh/rns
-unexpected stochasticity and possible change in the direction of rotation 

Kazeroni+17

rsh/rns = 2 rsh/rns = 3



Pulsar spin from a non rotating progenitor (Guilet & Fernandez 14)

The density of angular 
momentum captured in the 
SASI spiral wave can be 
related to the amplitude Δr of 
the saturated mode. 

The resulting distribution of 
rotation periods of pulsars 
born from a non rotating 
progenitor through a SASI 
dominated explosion  is 
comparable to the slowest 
part of the distribution of 
pulsar periods >80ms
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Towards higher Reynolds numbers
Foglizzo & Durand 17

-diameter 3m50: Reynolds x 10
à less viscous, more turbulent 

-overflowing injection
à "free fall"


