22/10/2015 CppCodingConventions —Mordicus — Trac

Derniére modification le 09/07/11 09:57:34
C++ Coding Conventions
Naming Conventions
» Class names must begin with an upper case character and the case of the following
characters must be determined using camel case convention. The 'underscore' (_)

character must be avoided in class names but for compelling reasons.

Example:

class SatelliteSpecs
{

}s

/* .0 */
* Variable and property names must begin with a lower case character and the case of

the following characters must be determined using camel case convention.

Example:
SatelliteSpecs satSpecs;

» Variable and property names must restrict the use of the 'underscore' (_) character to
unit postfix. Example: double payloadWeight kg;

» Operation names must begin with a lower case character and the case of the following
characters must be determined using camel case convention. Contrary to usual
conventions in C language or in the C++ standard library, the 'underscore' (_) character
should be avoided with 2 exceptions: accessor prefix and unit postfix.

Example:
double get payloadWeight kg();

« Namespace naming can either follow the same rules as class naming or be restricted
to an all-lowercase very short word (no more than 4 characters).

Example 1:

namespace DeployModel

{

/¥ oo */
}

Example 2:

namespace dhsm
{

/¥ ..o */
}

Creation and Naming of Files and Directories

» Every project directory must contain a src subdirectory containing all non-generated
source files.

 Every namespace defined within the project must correspond to a subdirectory of
directory src. Namespace subdirectories must follow the same nesting order as the
namespaces and adopt an identical capitalization.

https://dsm-trac.cea.fr/mordicus/wiki/CppCodingConventions 1/3


http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase

22/10/2015 CppCodingConventions —Mordicus — Trac

« In principle, for every non-template class there should be one header file using the .h
suffix and one implementation file using the .cpp suffix. However, a small set of
classes that are deeply linked together can be declared and implemented in a unique
header/implementation file pair. Template headers must bear the .hpp suffix whereas
ordinary class headers must stick to the usual .h C/C++ suffix.

» The capitalization of the file names must be identical to that of the class name.

« The header and implementation files of any class must be created within the
subdirectory of src corresponding to its namespace. For instance, the fully qualified
class DeployModel: :SatelliteSpecs must be declared and implemented in files
src/DeployModel/SatelliteSpecs.h and src/DeployModel/SatelliteSpecs.cpp.

» The header file must be protected from multiple inclusions using a leading #ifdef
that defines a preprocessor macro formed by the fully qualified name of the class,
using the 'underscore' character (_) as namespace separator, using an identical
capitalization and ending with the header file extension (_h or _hpp) and the label
'_INCLUDED'. For instance, the content of file sr¢/DeployModel/SatelliteSpecs.h
declaring the DeployModel: :SatelliteSpecs class should be enclosed wihtin the following
macro definition:

#ifndef DeployModel SatelliteSpecs h_ INCLUDED
#tdefine DeployModel SatelliteSpecs h_ INCLUDED

namespace DeployModel

{

class SatelliteSpecs

¢ /* ... Class declarations ... */
}s

}

#endif

Blocks and Indentation
e The curly brackets defining a block must occupy their own line. In particular, they must

not be preceded or followed by a C++ expression. Their indentation must be the same
as the statement preceding the block:

if (age < 25)
{

}

isFeeReduced = true;

» Indentation must be implemented using exclusively the tabulation character. To avoid
the visual annoyance of the standard 8-character length of a tabulation, you should
change the tab display length preference of your favorite editor, not use whitespaces
for indentation.

* The indentation of the following elements should not be increased:
o statements within namespace definition blocks:

namespace DeployModel

{
class SatelliteSpecs
{
/* ... Class declarations ... */
}s

https://dsm-trac.cea.fr/mordicus/wiki/CppCodingConventions 2/3



22/10/2015 CppCodingConventions —Mordicus — Trac

}

o case statements in a switch-case expression:

switch (choice)

{
case 'a':
/* ... ¥/
break;
case 'b':
/* L. */
break;
default:
/X L. %/
}

o scope statements (public, protected, private) in a class declaration:

class SatelliteSpecs

{
public:
double get_payloadWeight();
void set_payloadWeight(double value _kg);
bool islLaunchable();
private:
double payloadWeight_kg;
}s

Doxygenation

» All classes, operations and properties must be source-documented using doxygen.

» By default the javadoc syntax and conventions are preferred wherever possible. You
can find here the typical doxyfile that is to be used.

» Classes and properties must be doxygenated in the header file (*.h or *.hpp for
templates) to which they belong.

« Operations should be doxygenated in their corresponding implementation file (*.cpp)
rather than in the header in order to minimize comment clutter in the header file.

» Even for template operations (normally implemented in the header itself), an
implementation file (*.cpp) should be created containing only the corresponding
doxygen comments (using the @fn keyword to refer to the commented operation).

https://dsm-trac.cea.fr/mordicus/wiki/CppCodingConventions

3/3


http://www.stack.nl/~dimitri/doxygen/manual.html
https://dsm-trac.cea.fr/mordicus/wiki/TypicalDoxyFile

