FROM RESEARCH TO INDUSTRY

BEAM DYNAMICS STUDIES FOR HILUMI LHC

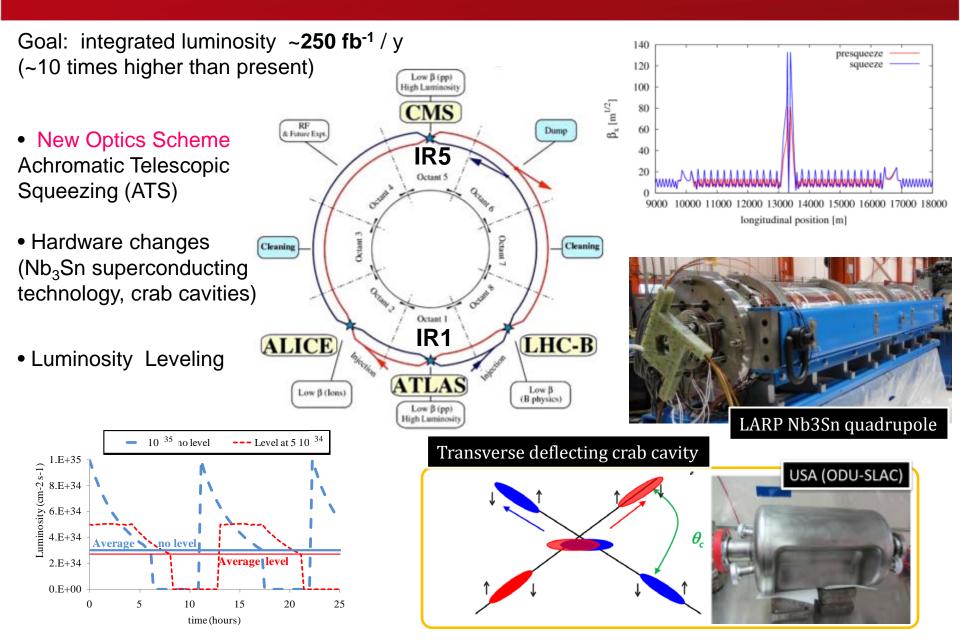
BARBARA DALENA

SACI AY 2014

IN COLLABORATION WITH: J. PAYET , A. CHANCÉ, O. GABOUEV

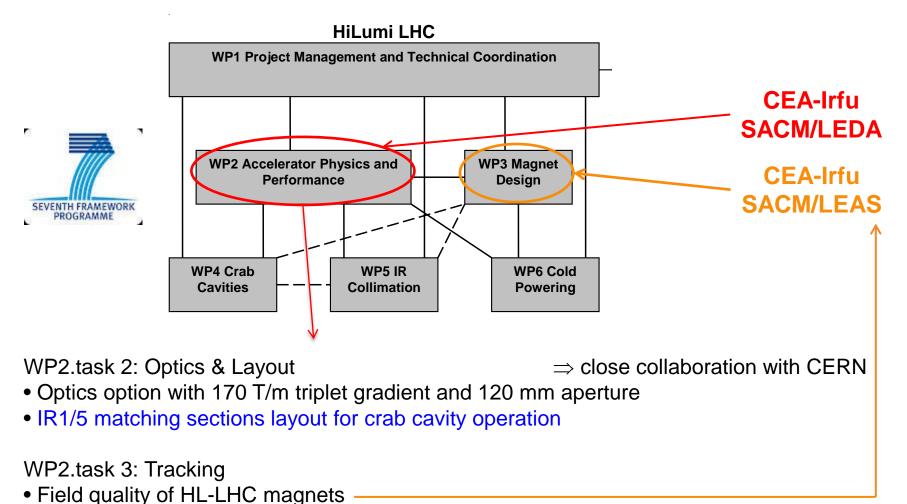
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

www.cea.fr



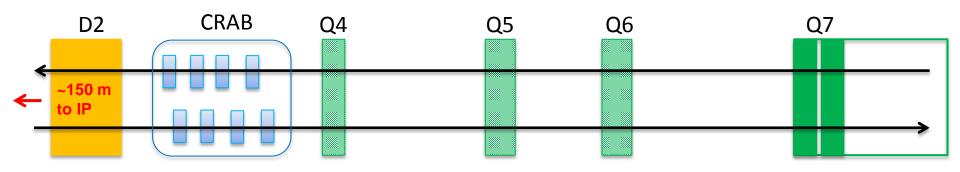
CONTENTS

- The HiLumi project
- Optics design
 - IR1/5 (ATLAS and CMS) matching sections layout for crab cavity operation
- Non linear beam dynamics
 - Non linear fringe field effects of large aperture magnets
- **Conclusion & Outlook**


@ SACM/LEDA

FROM RESEARCH TO INDUSTRY

HILUMI WORKING PACKAGES

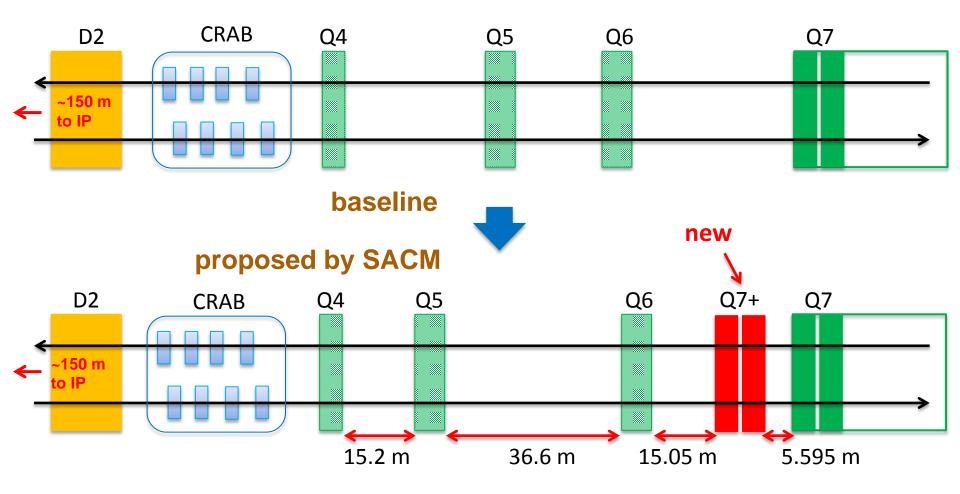


- Non linear fringe field effect of large aperture magnets \Rightarrow close collaboration with
 - Manchester University and CERN

OPTICS & LAYOUT

OPTIMIZATION FOR CRAB CAVITY OPERATION

Reduce the voltage of the crab cavity: $V \propto 1/(\beta_{crab} \beta_{IP})^{1/2}$


⇒ increasing the beta function at the CRAB

using

- quadrupole types
- quadrupole positions

	LHC	HL-LHC baseline
Q4	MQY, G=160 T/m @4.5 K Ø = 70 mm, L = 3.4 m	MQYY, G=120 T/m @1.9 K Ø = 90 mm, L = 3.5 m
Q5	MQML, G=160 T/m @4.5 K \emptyset = 56 mm, L = 4.8 m	MQYL, G=160 T/m @4.5 K Ø = 70 mm, L = 4.8 m
Q6	MQML, G=160 T/m @4.5 K \emptyset = 56 mm, L = 4.8 m	"idem"
Q7	2×MQM, G=200 T/m @1.9 K ∅ = 56 mm, L = 3.4 m	"idem"

PROPOSED IR1/IR5 MATCHING SECTION LAYOUT

	Left/Right side	Baseline [MV]	Proposed [MV]	Proposed non ATS [MV]
Horizontal	IR5 beam 1	10.8/12.0	8.9/8.8	8.8/9.4
crossing	IR5 beam 2	12.0/10.8	8.8/8.9	9.4/8.8
Vertical	IR1 beam 1	11.8/10.8	8.7/8.9	9.3/8.6
crossing	IR1 beam 2	10.8/11.8	8.9/8.7	8.6/9.3

Few changes in the interaction region layout \Rightarrow several benefits:

- \rightarrow Possibility to reduce the crab voltage of > 20%
- \rightarrow Compatible with low β_{IP} at injection (5m)
- → Compatible with the new optics scheme (ATS)
- → Possibility to squeeze to very low β_{IP} (non ATS)

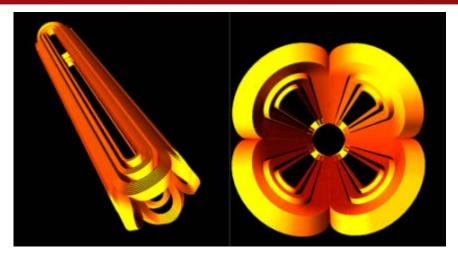
Drawbacks:

GAIN

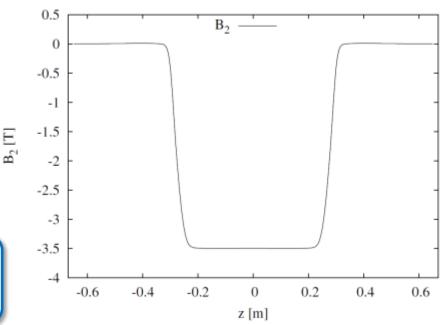
→ Matching section apertures closer to the beam stay clear limit

→ Additional hardware required (Q7+)

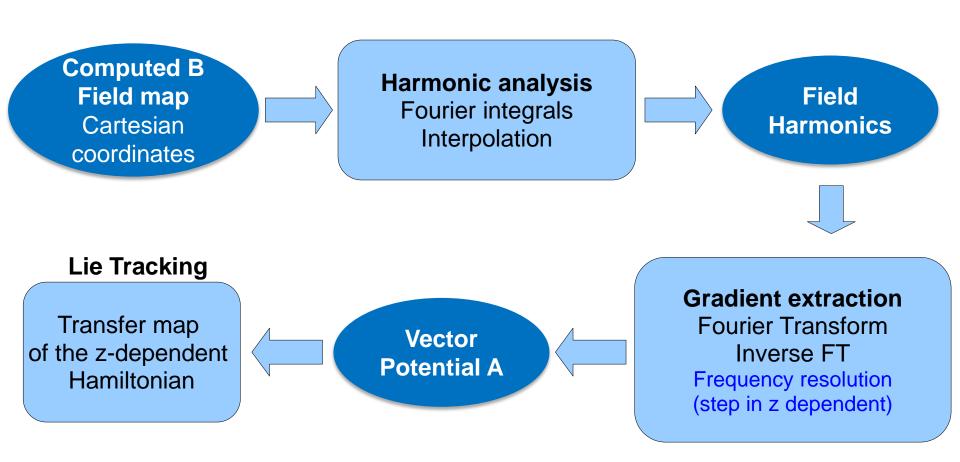
NON LINEAR BEAM DYNAMICS


FROM RESEARCH TO INDUSTRY

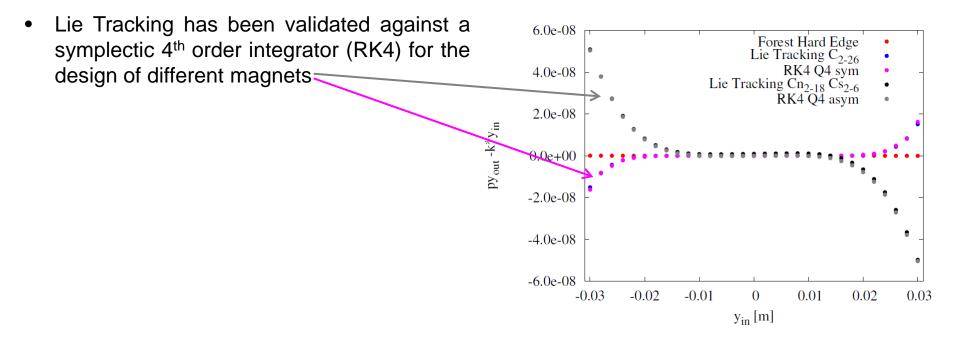
INNER TRIPLET NON LINEAR FRINGE FIELD EFFECT


- The HL-LHC project relies on large aperture magnets (due to increased beam sizes before the IP)
- \Rightarrow The beam is much more sensitive to nonlinear perturbations in this region.
- The duodecapole component of the fringe field in the original design of LHC inner triplet was found to reduce of a factor 5 the dynamic aperture (Venturini et al.)
- Present design for the HL-LHC inner triplet shows an important duodecapole component of the fringe field
- \Rightarrow fringe field modeling studies and integration in SixTrack (CERN code used to perform dynamic aperture studies)

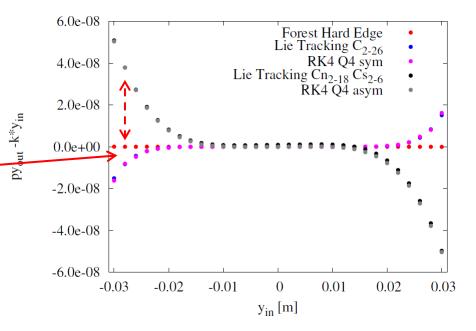
Ultimate Goals


- Definition of field quality and corrections
- Provide feedback to the designers of magnets

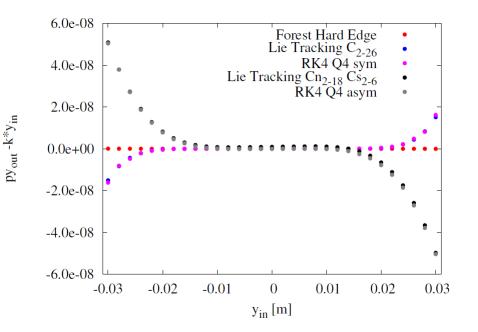
Courtesy of M. Segreti (CEA SACM/LEAS)



Internship Master 2 Oleg Gabouev



MODEL VALIDATION & DISCUSSION


- Lie Tracking has been validated against a symplectic 4th order integrator (RK4) for the design of different magnets
- Lie Tracking compared to analytical kicks model shows differences related to the actual shape of the magnet fringe field

MODEL VALIDATION & DISCUSSION

- Lie Tracking has been validated against a symplectic 4th order integrator (RK4) for the design of different magnets
- Lie Tracking compared to analytical kicks model shows differences related to the actual shape of the magnet fringe field
- Integration in SixTrack under discussion
 ⇒ try to find the best compromise between
 computational speed and actual field ends
 shape

CONCLUSION & OUTLOOK

WP2 activities @ CEA-Irfu:

Alternative optics of the high luminosity matching sections is studied

- crab cavity voltage gain > 20%
- more flexibility in collision optics

 \Rightarrow Investigation of injection and transition to collision optics

Non linear fringe field effects for the large aperture quadrupoles of the interaction regions is investigated

- model developed and validated
- implementation in SixTrack on going

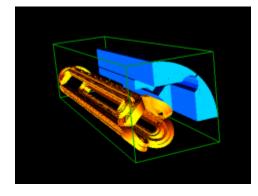
 \Rightarrow Evaluation of the effect on long-term beam dynamics

HL-LHC @ CEA-Irfu:

Keep on beam dynamics and machine development studies to prepare the LHC for the High Luminosity physics program

Participate to the design of future colliders

Thank you for your attention


Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 61 97 | F. +33 (0)1 69 08 64 42 Direction DSM Département Irfu Service SACM

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

FROM RESEARCH TO INDUSTR

INNER TRIPLET DESIGN

Susana Izquierdo Bermudez (CERN)

dx:dy:dz 3:3:5 [mm]

\Rightarrow Prototype scaled version

1.0e+001.2e-01 R=50 mm, old B₆ R 10 mm $B_{10} * 5 R = 50 \text{ mm}$ $B_{14} * 50 R = 50 \text{ mm}$ $B_{18} * 100 R = 50 \text{ mm}$ 1.0e-01 0.0e+008.0e-02 -1.0e+006.0e-02 -2.0e+00 4.0e-02 B₂ [T] B_n [T] -3.0e+002.0e-02 0.0e+00 -4.0e+00 -2.0e-02 -5.0e+00 -4.0e-02 -6.0e+00 -6.0e-02 -7.0e+00 -8.0e-02 -0.4 0.4 -0.6 -0.20.2 0.4 0.6 -0.8-0.6 -0.4 -0.20 0.2 -0.80 0.80.6 z [m] z [m]

G=140 T/m, \varnothing = 150 mm

Harmonics	Old map February 2013
B6	28.24
B10	3.91
B14	0.80
B18	1.76
B22	-0.18
B26	-0.015

0.8