LIGHT EXOTIC NUCLEI

Extensive studies could be performed during the last 15 years by our collaboration (IPN Orsay, CEA/Saclay, GANIL)

- Missing mass recoil particle detection
- Tools : MUST & MUST2

Recently : make use of ab initio overlaps in cross-section calculations

Investigation of ¹⁰He through ¹¹Li(d,³He) reaction

<u>Collaboration</u>: IPN Orsay – RIKEN – GANIL - CEA/Saclay - LPC Caen -JINR Dubna – Kurtchatov Institute - Kyushu Univ. – IPNS KEK – Univ. of Tokyo –Tokyo Inst. of Tech., Univ. Huelva, MSU/NSCL, INP Hanoi

Study of :
⁹Li(d,³He) → (⁹Li |⁸He)
¹¹Li(d,³He) → (¹¹Li |¹⁰He)
"critical" overlap

Direct reactions and Nuclear overlaps

Direct reactions allow to test nuclear overlaps e.g (A/B) B=A± 1 often referred as interface between nuclear structure and reaction

1 1

Can be taken as :

$$I^{A,A+1}(r) \approx S_{l,j} \frac{u_{nlj}(r)}{r}$$

 $u_{nlj}(r)$ from W.S. potential

Can be calculated in *ab initio* models such as VMC ,GFMC,NCSM, ... Brida, Pieper, Wiringa, PRC 84 (2011)

Case of transfer reactions

a + A → b + B A=B+x b=a+x

$$T_{AB}^{DWBA} = J \int \chi_{bB}^{*}(\vec{r}_{Bb}, \vec{k}_{b}) < \Phi_{B} \Phi_{b} | V_{ax}(r_{ax}) | \Phi_{a} \Phi_{A} > \chi_{aA}(\vec{r}_{Aa}, \vec{k}_{a}) d\vec{r}_{Aa} d\vec{r}_{Bb}$$

$$< \Phi_{b} | V_{ax} | \Phi_{a} > < \Phi_{B} | \Phi_{A} >$$

$$Range function \qquad Overlap function$$

$$\chi_{bB}, \chi_{aA}^{*}: Distorted waves$$

Direct reactions and Nuclear overlaps

✓ Electron scattering ⁷Li(e,e'p)
 L.Lapikas et al., PRL (1999)
 CDWIA calc with VMC overlap

Data very well reproduced in both shape and magnitude

Spectrocopic factors for GS: S (VMC) = 0.42(4) Correlations S (SM) = 0.7

Other reactions implemented recently : (non exhaustive list) :

Transfer reactions
 ⁶He(d,p), ⁸Li(d,p) ^{7,8}Li(d,³He), Wuosmaa et al.,PC(2005), PRL(2005), PRC(2008) VMC
 ⁹Li(d,t) Kanungo et al., PLB(2008) VMC
 ¹⁴O(d,³He)(d,t) Flavigny et al, PRL (2013) SCGF

 Single nucleon knockout (⁹Li,⁸Li), (⁹C,⁸B),(¹⁰Be,⁹Li), (¹⁰C,⁹C), ... G.Grinyer et al., PRL (2011), PRC (2012)
 VMC, NCSM

The < ^ALi|^{A-1}He> overlaps

- Electron scattering ⁷Li(e,e'p)
 CDWIA calc with *ab initio* Variational Monte-Carlo (VMC) overlap
- ✓ Transfer ^{7,8}Li(d,³He)

Generally: S (< $^{A}Li|^{A-1}He>$) < S(< $^{A}Li|^{A-1}Li>$)

✓ Proton knockout from ⁷Li

The ground-state of ¹⁰He

Consistent results from ¹¹Li(-1p) expts (Inv. Mass ⁸He+n+n channel)

 $E_{GS} \sim 1.2 - 1.6$ MeV above ⁸He+2n thres.

 $^{10}\text{Be}(^{14}\text{C}, ^{14}\text{O})^{10}\text{He} \rightarrow \text{E}_{\text{GS}} = 1.07(7) \text{ MeV}$

New results from ⁸He(t,p) E_{GS} = 2.1 (2) MeV S.Sidorchuk, PRL 108 (2012)

Interpretation :

E_{GS} dependent on the source size of the reaction (Grigorenko & Zhukov PRC (2008))

The ground-state of ¹⁰He

RECENT STUDY : 2p2n removal from ¹⁴Be Z.Kohley et al., PRL 109 (2012)

THEORY

a priori a good case for 3-body models: ⁸He+n+n

> Prediction of a ⁸He ground-state with dominant ⁸He $\otimes v(s1/2)^2$ with halo structure at E = 0.05 MeV

S. Aoyama, PRL 89 (2002)

ACCC method to solve the unbound 3-body problem

> New 3-body calculations including ⁸He core excitation

H. Kamada et al., PRC (2013) GS at 0.8 MeV

Both models rely on resonances in ⁹He which are not well established

Study of ^{9,11}Li(d,³He) @ 50 MeV/u at RIKEN/RIPS

- Spectroscopy of populated states
- **Decay pattern (branching ratios)**
- **Cross-sections**


```
Production Target :10mm Be
```

Purity≈84% (main contaminant ³H)

Purity \approx 7% (main contaminant ¹⁵B)

Detector's setup

- > Beam tracking detectors (PPAC) upstream of CD2 target
- > 8 MUST2 telescopes around the CD2 target + thin (20 μ m) Si layer (fwd)
- Plastic telescope at zero degrees

ΝЛ				
	-	 	-	- 2

00

Experimental Set-Up

Excitation Spectra

00

Experimental Set-Up

Excitation Spectra

⁸He+2*n* decay

$$\Gamma(E) = \frac{\Gamma_R}{(\pi M \rho_{ch}^2)} \frac{2}{(J_{K+2}^2(\varepsilon) + N_{K+2}^2(\varepsilon))}$$

•
$$E_R = 1.4(3)$$
 MeV $\Gamma_R = 1.4(2)$ MeV

•
$$E_R = 6.3(7)$$
 MeV $\Gamma_R = 3.2(2)$ MeV

¹¹Li(d,³He)¹⁰He counts / 750 keV 5 3-2 1-0 -2 2 0 4 6 8 10 12 14 E(¹⁰He) (MeV)

00

Experimental Set-Up

Excitation Spectra

⁸He+2n decay

$$\Gamma(E) = \frac{\Gamma_R}{(\pi M \rho_{ch}^2)} \frac{2}{(J_{K+2}^2(\varepsilon) + N_{K+2}^2(\varepsilon))}$$

•
$$E_R = 1.4(3)$$
 MeV $\Gamma_R = 1.4(2)$ MeV

•
$$E_R = 6.3(7)$$
 MeV $\Gamma_R = 3.2(2)$ MeV

⁶He+4*n* decay:

- R1 BR: 64(18)%
- R2 BR: 46(8)%
- \rightarrow Core excitation in g.s.
 - Many states at higher energy

¹¹Li(d,³He)¹⁰He

Analysis of ⁹Li(d,d) and ¹¹Li(d,d) @ 50 MeV/u

> For ⁹Li, global potential do not work well

> Better agreement in the case of ¹¹Li for some of them

Experimental Set-Up

Results

Available overlaps

Standard Potential Model (SPM)

- Fixed geometry WS well
 - \rightarrow r₀ = 1.25 fm a₀ = 0.65 fm
 - \rightarrow Adjust the depth to reproduce the binding energy

Source Term Approach (STA)

- Restoring missing correlations from the shell model
 - \rightarrow start with shell model s.p. wave function
 - \rightarrow resolve inhomogeneous equations using a given NN int.

N.K. Timofeyuk, Phys. Rev. C 88, 044315

Variational Monte Carlo (VMC)

- Numerical variational ab initio method
 - \rightarrow Difficult calculations
 - \rightarrow Limited cases tractable

R. Wiringa, http://www.phy.anl.gov/theory/research/overlap/

Differential cross-sections

- Full finite range calculations using DWUCK5
- (d|³He) overlap from GFMC (Brida, Pieper, Wiringa, PRC84 (2011))
- Entrance potential : Determined from elastic scattering data
- Exit potential : from Global formula Non-locality corrections for both potentials
- > Overlaps:
 - 1. Standard (s.p wave function) ($S^{th} = S^{SM} = 0.93$)
 - 2. Source term approach ($S^{th} = 0.38$)

Shape well-reproduced by DWBA calculations (I=1 transfer)

Differential cross-sections to ground-state

- Full finite range calculations using DWUCK5 (and FRESCO)
- (d|³He) overlap from GFMC (Brida, Pieper, Wiringa, PRC84 (2011))
- Entrance potential : From fit of elastic scattering
- Exit potential : from Global formula
- > Overlaps:
 - 1. Standard (s.p wave function) ($S^{th} = 0.65$)
 - 2. Inhomogenous equation [simplified] ($S^{th} = 0.58$)

Shape well-reproduced by DWBA calculations (I=1 transfer)

Differential cross-sections to ground-state

DWBA calculations NOT normalized to the data

Cross-sections stronglyTf 3(d)uETc[(se[W-3()e)3(pc)3(tal) Tffor

Decreasing trend of N_f toward the drip line
 N_f = 0.35 for ⁹Li(d,³He)⁸He using VMC
 N_f ≈ 1. for ⁸Li(d,p)⁹Li using VMC
 N_f for ¹¹Li correspond to standard SF of only 0.08

Reduction factors in recent transfer studies

Study of ¹⁴O(d,t)(d,³He) with MUST2

F. Flavigny et al., PRL 110 (2013)

Very weak asymmetry dependence of reduction factors

Similar conclusions in (p,d)(d,p) J.Lee et al. PRC 75 (2007), J.Lee et al. PRC 83 (2011)

(d,³He) studies at 40 MeV/u

Spectroscopic factors found in fair agreement with SM Provided he optical potential allow to reproduce differential cross-sections.

J.P. Didelez et al. PRC 13 (1976) N.S. Chant et al., PRC15 (1977)

J.P. Didelez et al., PRC 13(1976)

NB: in ¹¹Li(d,³He), residue is unbound Also the case for ⁸Li(d,³He) and in other studies e.g. ⁸He(p,d)⁷He

Differential cross-sections to excited states

DWBA calculations (FF from 2h₀ Shell Model)

Enhanced !

Importance of many-body dynamics in ¹¹Li

HIGHLIGHTS

Tests of Nuclear overlaps

- Shape of differential Xsection of ⁹Li(d,³He)⁸He well-reproduced by calculations using several overlaps including *ab initio* VMC Magnitude strongly reduced
- Even more reduced for ¹¹Li(d,³He)¹⁰He

Available overlaps fail away from stability

¹⁰He structure

- ➤ Two resonances at 1.4(3) MeV and 6.3(7) MeV
- ➢ ⁶He+4n decay channel preferred to 8He+2n

Role of many-body dynamics in ¹⁰He (and ¹¹Li)

NEXT : ¹⁰He populated by ¹⁴Be(p,pα) First study of 6n (decay channel of ¹⁰He^{*})

Collaboration

IPN Orsay, France

<u>A.Matta, D.Beaumel</u>, M.Assié, N. de Séréville, S.Franchoo, F.Hammache, E. Rindel, P. Rosier, J.-A. Scarpaci, I.Stefan

• RIKEN, Japan

<u>H.Otsu</u>, M. Nishimura, H.Baba, R,Chen, E.Nikolskii, T.Isobe, N.Aoi, T.Kubo, J.Lee, T.Motobayashi, H.Sakurai, M.Takechi, S.Takeuchi, N.Togano, H. Wang, K.Yoneda

Tokyo Institute of Technology, Japan

Y.Kondo, Y.Kawada, N. Kobayashi, T.Koutarou, T.Nakamura, T.Sako

CEA/SPhN Saclay, France

S.Boissinot, V.Lapoux, L.Nalpas, A.Obertelli, E.Pollacco

GANIL, France

P.Gangnant, J.-F.Libin, F.Saillant, C.Houarner

- LPC, University of Caen, France F.Delaunay, J.Gibelin
- KEK, Japan

N.Imai

Kyushu University

T.Teranishi

Universidad de Huelva

A.Sanchez-Benitez

• MSU/NSCL, USA

D.Suzuki

Institute of Nuclear Physics, Poland / JINR Dubna, Russia R.Wolski

- Institute for Nuclear Physics, Hanoi L.H.Khiem
- University of Surrey
 N.K Timofeyuk