Magneto is (not) a hero The role of the magnetic field in the formation of molecular clouds

Juan Diego Soler (Room 224) CEA/Saclay. January 4, 2016

b=2°

Why is star formation so inefficient?

65

=2(

......

•

~ 12 pc

Turbulence

Gravity

Radiation

• Stellar winds

SNe explosions

Cosmic rays

Magnetic fields

b=0°

b=-2°

Section of the Vela Molecular Ridge (250, 350, and 500 µm) [BLAST Collaboration. Netterfield et al. ApJ, 2009]

OH

Balloon-borne 250 µm (1' res.) 350 µm 500 µm polarimetry.

Juan D. Soler (CEA/Saclay). Jan. 2016

7.7-

Juan D. Soler (CEA/Saclay). Jan. 2016

Observations

Relative orientation

Simulations

- Magnetic field
- Turbulence
- Gravity

Histogram of Relative Orientations

Juan D. Soler (CEA/Saclay). Jan. 2016

Juan D. Soler (CEA/Saclay). Jan. 2016

Juan D. Soler (CEA/Saclay). Jan. 2016

The foreground emission

30 GHz 40 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz 857 GHz

[Planck Collaboration 2011]

The polarized sky as seen by Planck

Planck 2015 results. I. Overview of products and results

Juan D. Soler (CEA/Saclay). Jan. 2016

Magnetic field and polarization statistics

ightarrow

353 GHz Polarization angle Angle dispersion Planck intermediate results. XIX

- Polarized fraction Planck intermediate results. XX
- Power spectrum Planck intermediate results. XXX
- Geometric modelling Planck intermediate results. XXXIII Planck intermediate results. XXXIV
- Relative orientation
 Planck intermediate results. XXXII
 Planck intermediate results. XXXV
- Relation to E- and B-modes Planck intermediate results. XXXVIII

http://planckandthemagneticfield.info

353 GHz Polarized flux

Juan D. Soler (CEA/Saciay). Jan. 2010

Relative Orientations

Juan D. Soler (CEA/Saclay). Jan. 2016

Relative Orientations

Taurus region

- N_H from dust optical depth
- \mathbf{B}_{\perp} from Planck 353 GHz pol.

-- 10' FWHM (0.4 pc @ d=140 pc)

16 deg (40 pc @ d=140 pc)

 $Planck\ intermediate\ results.\ XXXV$

Histogram of Relative Orientations

Relative Orientations

Statistical Significance of Relative Orientations

Magnetic fields in molecular cloud formation

What have we learned?

- Magnetic field at least in equipartition with turbulence.
- Magnetic field comparable to gravity?

Planck intermediate results. XXXV

Magnetic fields and cloud formation

Gandilo, N. and BLASTPol collaboration, 2015 in preparation Shariff, J. and BLASTPol collaboration, 2015 in preparation Santos, F. and BLASTPol collaboration, 2015 in preparation Soler, J.D. and BLASTPol collaboration, 2016 in preparation

Open questions

- Line of sight integration
- Dust grain alignment
- Field structure at smaller scales

BLAST-TNG

Balloon-borne 250 µm (22" res.) 350 µm 500 µm polarimetry.

1000 MKIDs

Flying from Antarctica in 2017

~16x increase in mapping speed ~6x increase in resolution ~3x longer obs. time

b [deg] 1.3

0.8

266.8

וכו

Juan D. Soler (CEA/Saclay). MPIA. Nov. 2015

Challenging observations call for challenging simulations

Conclusions

@*Planck* polarization observations provide an unprecedented data set for the study of the magnetic field in molecular clouds #PlanckRocks

In 10 nearby MCs, high-N_H structures mostly perpendicular to the field. May have formed by #ConvergingFlows or #GravitationalCollapse along the field. #MagneticFieldMatters

#InDustWeTrust, but we have to improve our understanding of #DustGrainAlignment, combine #MultipleScales, and contrast the observations with #MHDSims

Visit http://planckandthemagneticfield.info

Planck intermediate results. XXXV Corresponding author: Juan D. Soler (IAS, France) arXiv:1502.04123 A&A accepted