The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters

Remco van der Burg Building 709, Room 64

A&A, 590, A20 (2016, ArXiv:1602.00002) Adam Muzzin, Henk Hoekstra, Cristóbal Sífon

PhD Astrophysics, Leiden Observatory, May 2014 PostDoc, CEA Saclay, May 2014

At the beginning of 2015...

FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER

PIETER G. VAN DOKKUM¹, ROBERTO ABRAHAM², ALLISON MERRITT¹, JIELAI ZHANG², MARLA GEHA¹, AND CHARLIE CONROY³

ABSTRACT

We report the discovery of 47 low surface brightness objects in deep images of a $3^{\circ} \times 3^{\circ}$ field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness $\mu(g,0)$ ranging from 24 – 26 mag arcsec⁻² and effective radii $r_{\text{eff}} = 3'' - 10''$, as measured from archival Canada France Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with $r_{\text{eff}} = 1.5 \text{ kpc} - 4.6 \text{ kpc}$ their sizes are similar to those of L_* galaxies even though their median stellar mass is only $\sim 6 \times 10^7 M_{\odot}$. The galaxies are relatively red and round, with $\langle g-i \rangle = 0.8$ and $\langle b/a \rangle = 0.74$. One of the 47 galaxies is fortuitously cover the stellar form.

a large spheroidal object with an effective radius of 7", co stars, consistent with expect (UDGs) may have lost their *Keywords:* galaxies: clusters

Dragonfly Camera array Abraham & van Dokkum 2014

In the following months:

SPECTROSCOPIC CONFIRMATION OF THE EXISTENCE OF LARGE, DIFFUSE GALAXIES IN THE COMA CLUSTER

PIETER G. VAN DOKKUM¹, AARON J. ROMANOWSKY^{2,3}, ROBERTO ABRAHAM⁴, JEAN P. BRODIE³, CHARLIE CONROY⁵, MARLA GEHA¹, ALLISON MERRITT¹, ALEXA VILLAUME³, AND JIELAI ZHANG⁴ GALAXIES AT THE EXTREMES: ULTRA-DIFFUSE GALAXIES IN THE VIRGO CLUSTER

J. CHRISTOPHER MIHOS¹, PATRICK R. DURRELL², LAURA FERRARESE³, JOHN J. FELDMEIER², PATRICK CÔTÉ³, ERIC W. PENG^{4,5}, PAUL HARDING¹, CHENGZE LIU^{6,7}, STEPHEN GWYN³, AND JEAN-CHARLES CUILLANDRE⁸

APPROXIMATELY A THOUSAND ULTRA DIFFUSE GALAXIES IN THE COMA CLUSTER

JIN KODA¹, MASAFUMI YAGI^{2,3}, HITOMI YAMANOI², YUTAKA KOMIYAMA^{2,4}

UNVEILING A RICH SYSTEM OF FAINT DWARF GALAXIES IN THE NEXT GENERATION FORNAX SURVEY

Roberto P. Muñoz¹, Paul Eigenthaler¹, Thomas H. Puzia¹, Matthew A. Taylor^{1,2}, Yasna Ordenes-Briceño¹, Karla Alamo-Martínez¹, Karen X. Ribbeck¹, Simón Ángel¹, Massimo Capaccioli³, Patrick Côté⁴, Laura Ferrarese⁴, Gaspar Galaz¹, Maren Hempel¹, Michael Hilker⁵, Andrés Jordán¹, Ariane Lançon⁶, Steffen Mieske², Maurizio Paolillo⁷, Tom Richtler⁸, Ruben Sánchez-Janssen⁴, and Hongxin Zhang^{1,9,10}

DISCOVERY OF AN ULTRA-DIFFUSE GALAXY IN THE PISCES-PERSEUS SUPERCLUSTER

DAVID MARTÍNEZ-DELGADO^{1,2}, RONALD LÄSKER², MARGARITA SHARINA¹², ELISA TOLOBA^{5,13}, JÜRGEN FLIRI^{3,15}, RACHAEL BEATON¹³, DAVID VALLS-GABAUD⁴, IGOR D. KARACHENTSEV¹², TAYLOR S. CHONIS⁶, EVA K. GREBEL¹, DUNCAN A. FORBES¹⁰, AARON J. ROMANOWSKY^{5,14}, J. GALLEGO-LABORDA⁹, KAREL TEUWEN⁸, M. A. GÓMEZ-FLECHOSO⁷, JIE WANG¹⁷,¹¹, PURAGRA GUHATHAKURTA⁵, SERAFIM KAISIN¹², NHUNG HO¹⁶

AN OVERMASSIVE DARK HALO AROUND AN ULTRA-DIFFUSE GALAXY IN THE VIRGO CLUSTER

MICHAEL A. BEASLEY^{1,2}, AARON J. ROMANOWSKY^{3,4}, VINCENZO POTA⁵, IGNACIO MARTIN NAVARRO^{1,2,4}, DAVID MARTINEZ DELGADO⁶, FABIAN NEYER⁷, AARON L. DEICH³

A long history of Low Surface-Brightness galaxies...

van Dokkum et al. 2015b, after Brodie et al. 2011 LSBs have been known before

 (Impey+88, Bothun+91, Turner+93, Dalcanton+97, ...)

 Ultra-Diffuse Galaxies (UDGs)

 are extremes in the sizeluminosity diagram:

r_{eff}>1.5 kpc

 $<\mu$ (r,r_{eff})> \approx 25 mag arcsec⁻²

How can UDGs survive the harsh dynamical environment of galaxy clusters?

Models rely on observational constraints

 Only Coma cluster studied, and some examples in Virgo and Fornax

to perform a (mostly) objective selection with the aid of Sloan Digital Sky Survey (SDSS) and archival Canada France Hawaii Telescope (CFHT) data, as described in the next Sec-

sition. This step left 186 objects which were inspected by eye. Of these, 139 were rejected, with most turning out to be clumps of multiple objects fainter than the i = 22.5 limit.

artifacts at image edges, and optical ghosts. To minimize human error, the four authors separately went through all postage stamp images. After this step and removal of duplications based on their coordinates, 854 UDG candidates were left on which at least three of us agreed. The

• Early studies not systematic, nor objective/reproducible

This study

• 8 clusters at $z \approx 0.05$ with deep g, r-band imaging with MegaCam@CFHT

vdBurg+16b

A&A, 590, A20

ArXiv:1602.00002

- Image simulations to quantify completeness
- Tightened selection criteria (SExtractor & GALFIT) to keep purity high

This study

• 8 clusters at $z \approx 0.05$ with deep g, r-band imaging with MegaCam@CFHT

vdBurg+16b

A&A, 590, A20

ArXiv:1602.00002

- Image simulations to quantify completeness
- Tightened selection criteria (SExtractor & GALFIT) to keep purity high
- Estimate background statistically using "empty" fields

Cluster	Zspec	RA	Dec	b_{Gal}	M_{200}^{a}	R_{200}^{a}
	-	J2000	J2000	[°]	$[10^{14} M_{\odot}]$	[Mpc]
A85	0.055	00:41:50.33	-09:18:11.20	-72.0	10.0 ± 1.7	2.0 ± 0.1
A119	0.044	00:56:16.04	-01:15:18.22	-64.1	7.5 ± 1.2	1.9 ± 0.1
A133	0.056	01:02:41.68	-21:52:55.81	-84.2	5.5 ± 1.7	1.7 ± 0.2
A780	0.055	09:18:05.67	-12:05:44.02	25.1	6.2 ± 2.5	1.7 ± 0.2
A1781	0.062	13:44:52.56	29:46:15.31	78.0	0.8 ± 0.5	0.9 ± 0.2
A1795	0.063	13:48:52.58	26:35:35.81	77.2	5.2 ± 1.0	1.6 ± 0.1
A1991	0.059	14:54:31.50	18:38:32.71	60.5	1.9 ± 0.5	1.2 ± 0.1
MKW3S	0.044	15:21:51.85	07:42:31.79	49.5	2.3 ± 0.6	1.2 ± 0.1

Some examples in the data

	r _{eff}	$\langle \mu(r, \mathbf{r}_{\rm eff}) \rangle$	Sérsic	g – r
	[kpc]	[mag arcsec ⁻²]	n	1
(a)	4.28	25.75	0.76	0.46
(b)	2.47	25.62	1.19	0.50
(c)	1.56	25.67	1.15	0.48
(d)	1.52	25.18	0.89	0.83
(e)	1.72	25.13	0.96	0.50
(f)	5.42	25.32	1.22	0.61
(g)	2.96	25.22	0.72	0.59
(h)	3.33	25.62	0.76	0.65
(i)	2.26	25.06	1.33	0.75

2456 selected in 8 cluster fields ~600 selected in 4 reference fields What are their physical properties?

Colour-magnitude distribution

- Selection based only on morphology
- All on the red sequence -> old stellar populations

See also: van Dokkum+15 Koda+15

Colour-magnitude distribution

Selection based only on morphology

- All on the red sequence -> old stellar populations
- Median stellar mass ≈10⁸ M_☉

See also: van Dokkum+15 Koda+15

Abundance versus halo mass

- Similar slope as mass-richness relation Mass measurements: Sifón+15
- Total stellar mass in UDGs \approx 0.2% of total cluster stellar mass
- Steep size distribution -> largest UDGs very rare

Steep size distribution -> largest UDGs very rare

ArXiv:1602.00002

Radial distribution of UDGs

• Einasto parameters different from typical dark matter halo

• Where does this distribution originate from?

Radial distribution of (massive) galaxies in clusters

• Total galaxy distribution follows NFW profile (dashed, total mass)

Red and blue galaxies have very different distributions

Radial distribution of UDGs

Total stellar-mass-weighted distribution

of quiescent galaxies (vdBurg+15)

Roughly follows dynamically old population in outskirts

• Complete deficit in the central 300kpc (in 3D, before projection)

How can UDGs survive down to 300kpc?

Also see van Dokkum+15

- A binding mass of 10⁸ M_☉ (the stellar mass) by far not enough
- O Given cluster mass interior to 300kpc, one needs 2×10⁹ M_☉ within a tidal disruption radius of 6kpc
 Roche limit,
 - 95% dark matter in the UDG centres

Roche limit, Binney & Tremaine 1987

 Within 300kpc, the tidal forces from the cluster halo exceed the binding mass of the UDGs

Are these failed Milky-Way type galaxies?

Radial distribution of "normal" dwarfs

 "Normal" dwarfs with 0.5< r_{eff} [kpc] <1.0 and same luminosities as UDGs exist down to ~100kpc from the cluster centre

Roche limit for "normal" dwarfs at 100kpc

- A comparison of UDGs and more compact dwarfs with stellar masses of $10^8 M_{\odot}$
- O Given cluster mass interior to 100kpc, one needs 4×10⁸ M_☉ within a tidal disruption radius of 2kpc for dwarfs
- O Given cluster mass interior to 300kpc, one needs 2×10⁹ M_☉ within a tidal disruption radius of 6kpc for UDGs
- Two enclosed masses for 2 different populations

Roche limit for "normal" dwarfs at 100kpc

- A comparison of UDGs and more compact dwarfs with stellar masses of $10^8 M_{\odot}$
- O Given cluster mass interior to 100kpc, one needs 4×10⁸ M_☉ within a tidal disruption radius of 2kpc for dwarfs
- O Given cluster mass interior to 300kpc, one needs 2×10⁹ M_☉ within a tidal disruption radius of 6kpc for UDGs
- Two enclosed masses for 2 different populations • $\rho = c \times r^{-\gamma}$, with $\gamma \approx 1.5$
- Consistent with them having similar dark matter haloes

Dynamical mass measurement based on globular clusters Beasley+16

Enclosed mass within $8 \text{kpc} = 5 \pm 3 \times 10^9 \text{ M}_{\odot}$

From central mass to virial mass Beasley+2016

Different interpretations of the same measurement:

- "An overmassive dark halo around an ultra-diffuse galaxy in the Virgo cluster." Beasley+2016
- "This shows that [this UDG] is a genuine dwarf galaxy despite its effective radius Amorisco & of 2.4 kpc, disfavouring the possibility of a 'failed' L* galaxy." Loeb 2016

How to explain the UDG population?

- Tidal debris
 - Very unlikely given their smooth morphologies
- Tidally disturbed/heated "normal" dwarf galaxies
 Unlikely given their extended radial distribution
- Failed Milky-Way type galaxies
 - Still unclear why some haloes would have "failed"
- High-spin tail of the dwarf galaxy population Amorisco & Loeb 2016
 May be explained by standard model of disk formation

vdBurg+16

How to explain the UDG population?

- Tidal debris
 - Very unlikely given their smooth morphologies
- Tidally disturbed/heated "normal" dwarf galaxies
 Unlikely given their extended radial distribution
- Failed Milky-Way type galaxies
 - Still unclear why some haloes would have "failed"
- High-spin tail of the dwarf galaxy population Amorisco & Loeb 2016
 May be explained by standard model of disk formation

vdBurg+16

Field studies and halo mass measurements essential to make progress

Field studies

• Does this relation extend down to much lower mass haloes?

- What would their properties be?
- Without a cluster in the FoV, only ~ 10^{14} total mass at z<0.07 per sqr degree -> Need large area surveys for a statistical study

Measuring halo masses of UDGs

- Difficult to use methods that rely on stellar tracers of the potential
 - Even getting a redshift takes a long time
 - Perhaps using Globular Clusters is an (expensive) option for UDGs in low-z clusters
- An alternative is to measure the gravitational distortion of source galaxies behind the UDGs
 - CFHT data were taken with weak gravitational lensing in mind
 - Signal from failed Milky-Way type haloes should clearly stand out

Summary

vdBurg+16b A&A, 590, A20 ArXiv:1602.00002

- Abundance of UDGs in clusters surprising and not yet understood
- First constraints from a systematic study in 8 nearby clusters
 - UDGs abundant in each cluster, with abundance scaling with M_{200}
 - Steep size distribution (largest UDGs rare)
 - Colour-magnitude distributions (old stellar populations)
 - They follow dynamically old galaxies spatially, with central deficit
- Measurements already used to constrain theoretical models

See Amorisco & Loeb 2016

- Several scenario's being considered
 - Essential to estimate field abundance and measure halo masses

