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Exoplanets	
  variety	
  

Our	
  Solar	
  system	
  

Distances	
  not	
  to	
  scale	
  



Transit	
  of	
  an	
  exoplanet	
  with	
  atmosphere	
  

Time	
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Phase	
  curve	
  
•  Atmospheric	
  circulaRon	
  

Eclipse	
  
•  Thermal	
  radiaRon	
  
•  Molecular	
  emission	
  
•  Albedo	
  

Transit	
  
•  Size	
  of	
  the	
  planet	
  
•  Molecular	
  absorbers	
  and	
  

clouds	
  



Atmospheric	
  absorp&on	
  

rp	
   H

Required	
  precision	
  of	
  10	
  –	
  100	
  parts	
  per	
  million	
  (ppm)!	
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Technical	
  and	
  astrophysical	
  challenges	
  

Removing	
  the	
  instrument	
  systemaRcs	
  
(Spitzer,	
  Hubble	
  	
  ~	
  100	
  –	
  1000	
  ppm)	
  

Accurate	
  modeling	
  the	
  astrophysical	
  scenario:	
  
stellar	
  limb-­‐darkening,	
  acRvity,	
  etc.	
  (~	
  100	
  –	
  1000	
  ppm)	
  

InterpreRng	
  the	
  atmospheric	
  spectrum:	
  
many	
  chemical	
  species,	
  parameter	
  degeneracies,	
  low	
  signal-­‐
to-­‐noise	
  data,	
  sparse	
  wavelength	
  coverage,	
  etc.	
  



Removing	
  the	
  instrument	
  systemaRcs	
  
(Spitzer,	
  Hubble	
  	
  ~	
  100	
  –	
  1000	
  ppm)	
  



Data	
  detrending:	
  parametric	
  
The Astrophysical Journal, 731:16 (12pp), 2011 April 10 Beaulieu et al.

Figure A1. Raw photometric data for 3.6 and 4.5 µm obtained with IRAC. Each sub-panel has the same structure showing from top to bottom: the variation of the
centroid position in X, in Y, and lastly the predicted baseline flux using pixel-phase correction. The lowest panel of each plot is the primary transit and overplotted the
50-point median-stack smoothing. They provide a synoptic view of the systematic trends present in IRAC primary transit data.
(A color version of this figure is available in the online journal.)
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1.  OpRcal	
  State	
  Vector	
  (OSV):	
  
detector	
  temperature,	
  
inclinaRon,	
  point	
  spread	
  
funcRon,	
  etc.	
  

2.  Measured	
  flux	
  is	
  
correlated	
  with	
  OSV	
  
parameters	
  

3.  Parametric	
  correcRon	
  
based	
  on	
  those	
  
parameters.	
  

Example:	
  Spitzer/IRAC	
  -­‐>	
  division	
  by	
  a	
  polynomial	
  
funcRon	
  of	
  	
  centroid	
  coordinates.	
  

Some	
  controversial	
  
results	
  in	
  the	
  literature	
  
(correcRons	
  beyond	
  the	
  
well-­‐known	
  instrument	
  
response)	
  



Data	
  detrending:	
  blind	
  

Instrument	
  
model	
  (OSV)	
  

Parametric	
  
forms	
  

Non-­‐parametric	
  
e.g.,	
  SpaRal	
  WeighRng	
  FuncRons	
  (Ballard	
  
et	
  al.	
  2010),	
  BLISS	
  mapping	
  (Stevenson	
  et	
  
al.	
  2012),	
  Gaussian	
  Processes	
  (GPs,	
  
Gibson	
  et	
  al.	
  2012,	
  Evans	
  et	
  al.	
  2015)	
  

Blind	
  
e.g.,	
  Fourier,	
  Wavelet	
  Filters,	
  	
  
Principal	
  Component	
  Analysis	
  (PCA),	
  
Independent	
  Component	
  Analysis	
  (ICA)	
  

Highest	
  degree	
  of	
  objec&vity	
  
Consistent	
  results	
  



Independent	
  Component	
  Analysis	
  

Sources	
   Mixtures	
  

Independent	
  Com
ponent	
  Analysis	
  

Separated	
  sources	
  X	
  =	
  AS	
  
observaRons	
   signals	
  

mixing	
  	
  matrix	
  

S	
  =	
  A-­‐1X	
  
UNKNOWN	
  

Minimize	
  
mutual	
  

informaRon	
  



ICA:	
  sta&s&cs	
  (1)	
  

Since Vx has uncorrelated components, one could hope Vx = s, i.e. the
problem is already solved. However, it does not happen. In fact, a generic
orthogonal transformation of the vector signal Vx has still uncorrelated com-
ponents. This process does not allow to find which one has indipendent com-
ponents. (Hyvarinen, Karhunen, and Oja 2001)
Nevertheless, whitening is a useful preprocessing step, because the matrix
VA is orthogonal. This allows to restrict the search for the mixing matrix
in the space of orthogonal matrices, reducing the number of free parameters
from n2 to n(n � 1)/2. Being whitening a much simpler process than ICA,
this is computationally advantageous. (Hyvarinen, Karhunen, and Oja 2001)

D.2 ICA estimators

In this section I will show the main estimators used to perform ICA. Essen-
tially, they are mathematically equivalent, di↵ering in statistical properties
such as consistency, asymptotic variance, robustness and in computational
simplicity and e�ciency.

D.3 Estimators

D.3.1 Entropy

Entropy is the basic concept of Information Theory. For a random vector
y = (y

1

, y
2

, ..., yn) it is defined as:

H(y) = �
Z

p(y) log p(y) dy for continuous variable (D.8)

H(y) = �
X

k

p(yk) log p(yk) for discrete variable (D.9)

Note that yk = (yk11, yk22, ..., yknn) in D.9.
It is the optimal measure of the uncertainty associated with a random vari-
able. In fact, in the discrete case:

• H is maximum if all the possible exits for the variables are equiprobable;

• H is minimum, that is zero, if there is only one exit with probability 1
and the others with probability 0.

While, in the continuous case:

• H is small, that is negative with big absolute value, if p(y) is concen-
trated in a strict interval, assuming high values.
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Shannon	
  entropy	
  

It	
  is	
  the	
  staRsRcal	
  measure	
  of	
  uncertainty	
  
associated	
  with	
  a	
  random	
  variable.	
  

D.3.2 Mutual information

Mutual information measures the informations that members of a set of ran-
dom variables have on the other random variables in the set. For a random
vector y = (y

1

, y
2

, ..., yn) it is defined by

I(y
1

, y
2

, ..., yn) =
nX

i=1

H(yi)�H(y) (D.10)

where H is the entropy function.
It is intuitive that maximization of indipendence is equivalent to minimiza-
tion of mutual information. Using Equation 2.4, mutual information for
source signals results:

I(s
1

, s
2

, ..., sn) =
X

i

H(si)�H(x)� log|det(W)| (D.11)

If the yi are constrained to be uncorrelated and of unit variance, det(W) is
constant, so that the last term in Equation D.11 has no e↵ect in finding the
minimum of mutual information.
Mutual information is not really used because its complexity. Other estima-
tors are all related to mutual information.

D.3.3 Negentropy

Among all the distributions with fixed mean and covariance matrix, the
gaussian distribution has the maximum entropy. This property suggests to
define negentropy as an estimator of nongaussianity:

J(y) = H(ygauss)�H(y) (D.12)

where ygauss is a random gaussian vector with the same covariance matrix of
y. Negentropy is zero if y is gaussian, positive in other cases.
Thus minimization of mutual information equivals maximization of the sum
of the nongaussianities of the estimated components.
The entropy of a gaussian random vector can be evaluated as

H(ygauss) =
1

2
log |det(C)|+ n

2
[1 + log(2⇡)] (D.13)

where C is the covariance matrix and n is the dimension of y.
An important property of negentropy is scale-invariance, which justify the
ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.
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Spitzer/IRAC	
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of	
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Spitzer/IRAC	
  	
  observa&ons	
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Spitzer/IRAC	
  	
  observa&ons	
  of	
  GJ436b	
  
-­‐	
  Results	
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Secondary	
  eclipse	
  of	
  XO3b	
  

Figure 2. Left panels: (blue) raw light curves obtained from 5×5 array of pixels. Right panels: (blue) detrended eclipse light curves obtained with the wavelet pixel-
ICA method, and (red) best eclipse models. All the light curves are binned over 32 frames, i.e., ∼64 s.

4

The Astrophysical Journal, 820:86 (14pp), 2016 April 1 Morello, Waldmann, & Tinetti

Morello	
  et	
  al.	
  2016	
  



IRAC	
  data	
  challenge:	
  eclipses	
  of	
  XO3b	
  

scatter due to measurement error) to 1 (no measurement error).
Reliability is essentially a normalized measure of precision, and
is inversely related to repeatability (we demonstrate this
relationship below).

We list the computed values of r for each method in column
9 of Tables 3 and 4. For the real data, the reliability is quite
high in most cases, with an average of =r 0.52, suggesting
that half of the scatter is due to intrinsic photon noise. The ICA
and kernel regression (KR/Data and KR/Pmap) techniques
appear to have the least amounts of correlated noise (scatter in
eclipse depths consistent with more than half photon noise).
For the simulated data, however, the values are lower, with an
average reliability of =r 0.32.

Figures 12 and 13 are scatterplots of repeatability versus
reliability for the real and simulated eclipse depths, respectively.
These data appear inversely correlated, which is not surprising. If
two values are drawn from the same parent population, then the
variance in the difference between the values should be twice the
variance of the original distribution, which means that for large
enough samples [ ( )] ( )D =SD 2 SDij

2 2. Thus by the definition
of r, we expect s= -R r2 phot

1. We overlay this theoretical
curve, as well as linear fits to R as a function of r−1 on
Figures 12 and 13. The two curves for each plot are practically
identical, with the fit factors multiplying r−1 within 1% of the
theoretical values, indicating statistical self-consistency between
[ ( )]DSD ij and SD. This implies that the repeatability and
reliability derived from 10 element samples are robust.

Figure 14 plots the reliability for simulated data as a function
of that for real data, for the seven decorrelation methods, with
lines of different slope overlaid. There seems to be no
relationship between the reliability measures for real and
simulated eclipses, except that the simulated values are nearly
all lower than their real counterparts. Only BLISS has a similar
reliability for both real and simulated data (r= 0.40 and 0.44,
respectively). The kernel regression techniques both show the
largest decrease, with »r r0.4sim real. We conclude that BLISS
is most robust to increases in positional dispersion, the main
source of additional correlated noise between the simulated and
real data sets. The (Gaussian) kernel regression methods seem
to be least robust to such changes.

3.4.3. Accuracy

The accuracy of a technique is a quantitative estimate of
how well the technique measures a given characteristic of a
system. Earlier definitions of accuracy were synonymous with
what is now called trueness, the proximity of the mean of a set
of measurements to the true value. Current definitions of
accuracy, however, encompass both random and systematic
error. That is, accuracy is limited by precision.13 Even if the
mean of a set of measurements is extremely close to the truth
(bias is low and trueness is high), if the reliability (precision) is
low (the scatter in results is large), the result is still considered
to have low accuracy.
Assume an exoplanet system is observed N times, and a

given technique j yields a set of measurements of the eclipse

Figure 12. Repeatability as a function of reliability, for the real XO-3b eclipse
depth measurements. The dashed curve displays the fit R=75.4 r−1 ppm, and
the solid curve shows the expected behavior s= =- -R r r2 75phot

1 1.

Figure 13. Repeatability as a function of reliability, for the simulated data. The
dashed curve displays the fit R=(75.4 r−1)ppm, and the solid curve shows
the theoretical behavior, R=75 r−1.

Figure 14. Reliability comparison between simulated and real eclipse depths.
Gray lines indicate rsim/rreal=0.4, 0.6, 0.8, and 1.0.

13 ISO5725-1: 1994, “Accuracy (trueness and precision) of measurement
methods and results.”
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Accurate	
  modeling	
  the	
  astrophysical	
  scenario:	
  
stellar	
  limb-­‐darkening,	
  acRvity,	
  etc.	
  (~	
  100	
  –	
  1000	
  ppm)	
  



Stellar	
  limb	
  darkening	
  (1)	
  

Four-­‐coefficient	
  law	
  (Claret	
  2000)	
  



Stellar	
  limb	
  darkening	
  (2)	
  
PROBLEM:	
  
parameter	
  degeneracies!	
  
	
  

SOLUTIONS	
  (to	
  date):	
  	
  
Limb-­‐darkening	
  coefficients	
  
1.  from	
  stellar-­‐atmosphere	
  models	
  
No	
  empirical	
  verificaRon	
  
2.  free	
  parameters	
  in	
  light-­‐curve	
  fits,	
  

but	
  linear	
  or	
  two-­‐coefficient	
  laws	
  
Inadequate	
  for	
  certain	
  passbands	
  
	
  

PotenRal	
  biases	
  
in	
  transit	
  depth	
  



Stellar	
  limb-­‐darkening	
  (3)	
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Figure 5. Top panel: di↵erences between the best-fit and the input transit depths for the edge-on transits in front of the M5 V
model using fixed quadratic (green, upward triangles), square-root (yellow, downward triangles), claret-4 (red diamonds), and
power-2 (blue circles) limb-darkening coe�cients; the expected values (Equations 7–8) are indicated with black ‘+’. The fixed
limb-darkening coe�cients are fitted to the plane-parallel angular intensities. Middle, bottom panels: the same for M0 V, F0 V
models.

plitudes in best-fit transit depths over the five pass-
bands are 94, 28, and 8 ppm, going from the coolest
to the hottest model. The results obtained with the
power-2 coe�cients are more robust for the cooler stars,
and are within 44 ppm of expected values, except for
the F0 V model in the visible passbands, where the in-
ferred transit depths are 105 and 88 ppm larger for the
STIS/G750L and STIS/G430L passbands. The peak-
to-peak amplitudes in best-fit transit depths over the
five passbands are 47, 44, and 102 ppm, again from the
coolest to the hottest model. The quadratic-law coef-
ficients have the largest scatter in the best-fit transit
depth across the di↵erent passbands for all models, with
peak-to-peak amplitudes of 250, 164, and 107 ppm.
Even though the true value of the transit depth is

not known in a ‘real-world’ scenario, the presence of

biases can be revealed by time-correlated noise in the
light-curve residuals. Figure 6 shows the residuals be-
tween the exact light-curves and the best-fit parametric
models. The amplitudes of the time-correlated residu-
als (maximum discrepancies from zero) are in the ranges
97–456, 8–105, and 11–75 ppm with quadratic, power-2,
and claret-4 models. Residuals at infrared wavelengths
are typically smaller than in the visible, as expected.
In principle, the analysis could be improved if the

theoretical limb-darkening coe�cients were fitted to the
spherical, rather than plane-parallel, intensities. How-
ever, given that the parametric laws cannot fit the char-
acteristic intensity drop-o↵, the limb-darkening coe�-
cients strongly depend on the choice of a cut-o↵ in µ,
and on the µ sampling, especially near the cut-o↵. A
detailed study of this aspect is beyond the scope of this

(stellar	
  model-­‐atmosphere)	
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Figure 7. Top panel: di↵erences between the best-fit and the input transit depths for the edge-on transits in front of the M5 V
model (T

e↵

= 3084, log g = 5.25), using empirical quadratic (green, upward triangles), square-root (yellow, downward triangles),
claret-4 (red diamonds), and power-2 (blue circles) limb-darkening coe�cients; the expected values are indicated with black ‘+’.
The empirical limb-darkening coe�cients are fitted to the transit light-curves with b = 0. Middle panel: the same for the M0 V
model (T

e↵

= 3759, log g = 4.75). Bottom panel: the same for the F0 V model (T
e↵

= 7250, log g = 4.25).

4.4.2. Inclined transits

For randomly orientated orbits, the inclinations i are
distributed such that the probability density of cos i is
uniform between 0 and 1. For circular orbits, therefore,
the impact parameter, b = aR cos i, is uniformly dis-
tributed between 0 and aR, the semimajor axis in units
of stellar radius. An exoplanet transits if and only if
0  b < 1 + p. We tested whether the ability to con-
strain the stellar limb-darkening profile and to measure
the correct transit depth changes for the case b = 0.5.
This was conducted for the claret-4 and power-2 laws,
as they led to more robust results than the other pa-
rameterizations. In this configuration, the area of the
stellar disk with r < b� p = 0.35, or µ & 0.94, is never
occulted by the transiting exoplanet.
Figure 9 shows the comparison between the transit

depths estimated for the cases with b = 0 and 0.5, using
the claret-4 and power-2 laws. In most cases, there are
no significant di↵erences in transit depth obtained for
the cases with b = 0 and 0.5. The largest discrepancies
(29–68 ppm) are registered for the three ‘bad’ points of
the power-2 law, which are highlighted in Section 4.4.1.
The empirical limb-darkening profiles are also very sim-
ilar. Figure 10 shows the di↵erence for the two most
discrepant cases. The parametric models obtained from
the transits with b = 0.5 approximate the intensities at
the limb slightly better than the ones obtained from the
transits with b = 0, but the bias is also significant. In
general, it appears that, if a parametric law does not al-
low a good approximation of the limb-darkening profile,
the empirical model is optimized towards the center of
the disk and significantly deviates at the limb (see also

(light-­‐curve	
  fit)	
  

Morello	
  et	
  al.	
  2017	
  



SEA	
  BASS	
  
Stellar	
  and	
  Exoplanetary	
  Atmospheres	
  
Bayesian	
  Analysis	
  Simultaneous	
  Spectroscopy	
  

INFRARED	
  TRANSITS	
  
ü  Two-­‐coefficient	
  limb-­‐darkening	
  laws,	
  

or	
  
ü  Fixed	
  limb-­‐darkening	
  coefficients	
  

	
  =>	
  	
  geometric	
  parameters	
  (orbital,	
  transit	
  duraRon)	
  
	
  

Figure 23. Left panels: exact transit light-curves obtained with b=0. Right, top panels: residuals for the best-fit transit models using fixed quadratic (green), square-
root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. The coefficients are fitted to the plane-parallel angular intensities. Right, bottom panels:
residuals obtained with the empirical limb-darkening coefficients.
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VISIBLE	
  TRANSITS	
  
ü  InformaRve	
  Bayesian	
  priors	
  on	
  the	
  geometric	
  parameters	
  
ü  Fully	
  empirical	
  four-­‐coefficient	
  limb-­‐darkening	
  
	
  

Figure 23. Left panels: exact transit light-curves obtained with b=0. Right, top panels: residuals for the best-fit transit models using fixed quadratic (green), square-
root (yellow), claret-4 (red), and power-2 (blue) limb-darkening coefficients. The coefficients are fitted to the plane-parallel angular intensities. Right, bottom panels:
residuals obtained with the empirical limb-darkening coefficients.
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SEA	
  BASS:	
  HD20458	
  l-­‐d	
  profile	
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  HD20458b	
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State-­‐of-­‐the-­‐art	
  scien&fic	
  results	
  



Image	
  credit:	
  Szabo	
  et	
  al.	
  2013	
  

Kepler	
  photometry	
  

Rapid	
  rotators:	
  KOI13	
  

Howarth	
  &	
  Morello	
  2017	
  

•  Stellar	
  oblateness	
  
•  Gravity	
  darkening	
  
•  Rossiter–McLaughlin	
  effect	
  

Absolute	
  system	
  dimensions	
  determined	
  from	
  
star’s	
  projected	
  equatorial	
  rotaRonal	
  speed	
  	
  	
  



Atmosphere	
  around	
  super-­‐Earth	
  55	
  Cnc	
  e	
  

Table 3
Limb Darkening Coefficients a1 4- and Transit Depth R Rp

2( )* for the Wavelength Channels

R R ppmp
2( ) ( )*

m1 2 [ ]l l m- a1 a2 a3 a4 Visit 1 Visit 2 W. Average

1.1233 1.1407 0.772891 −0.719847 0.973720 −0.395615 337±28 372±23 358±18
1.1407 1.1584 0.748548 −0.643287 0.890964 −0.366607 349±29 370±24 361±18
1.1584 1.1764 0.738983 −0.606810 0.847497 −0.353214 333±26 342±28 337±19
1.1764 1.1946 0.729208 −0.572574 0.800655 −0.335301 351±21 353±22 352±15
1.1946 1.2131 0.725726 −0.564131 0.785763 −0.330767 303±22 357±22 329±16
1.2131 1.2319 0.697907 −0.466097 0.687658 −0.298018 321±20 332±21 326±14
1.2319 1.2510 0.692692 −0.446746 0.662990 −0.289484 303±20 301±21 302±14
1.2510 1.2704 0.685452 −0.409084 0.612133 −0.271088 346±20 328±22 338±15
1.2704 1.2901 0.685892 −0.378366 0.574713 −0.270881 343±22 324±23 333±16
1.2901 1.3101 0.673686 −0.354792 0.546395 −0.250464 341±21 311±25 328±16
1.3101 1.3304 0.669421 −0.331802 0.512473 −0.238250 349±20 354±20 351±14
1.3304 1.3511 0.660777 −0.276281 0.439988 −0.211147 339±20 360±22 348±15
1.3511 1.3720 0.659749 −0.252857 0.401237 −0.196660 334±20 318±24 327±15
1.3720 1.3933 0.652560 −0.189532 0.311675 −0.162120 354±20 322±20 338±14
1.3933 1.4149 0.650933 −0.175302 0.300256 −0.163030 370±20 355±24 363±15
1.4149 1.4368 0.650697 −0.189841 0.330447 −0.180237 396±20 387±19 391±14
1.4368 1.4591 0.650529 −0.135161 0.234549 −0.139640 358±22 370±19 365±14
1.4591 1.4817 0.639029 −0.076708 0.161044 −0.112436 337±20 361±21 348±14
1.4817 1.5047 0.655337 −0.083499 0.125497 −0.091207 388±20 402±20 394±14
1.5047 1.5280 0.660770 −0.025056 0.023486 −0.048336 377±21 380±23 378±16
1.5280 1.5517 0.686804 −0.012316 −0.049479 −0.011120 427±21 386±20 405±14
1.5517 1.5758 0.721349 −0.080742 −0.011227 −0.017553 404±21 372±21 388±15
1.5758 1.6002 0.756804 −0.185811 0.070349 −0.038516 388±22 414±21 402±15
1.6002 1.6250 0.801062 −0.222450 0.054906 −0.024391 382±23 394±22 388±16
1.6250 1.6502 0.828396 −0.271626 0.075149 −0.025545 420±23 386±23 404±16

Figure 8. Top: infrared transmission spectrum of the hot super-Earth 55 Cancri e (gray error bars), best fit obtained with , -REx(brown line), fitted model containing
hydrogen and helium (dashed orange line), and an ab initio model with C/O=1.1 (green line, see also Section 4.2). The shaded regions show the the 1 and 2σ
confidence intervals in the the retrieved spectrum. Bottom: the same hydrogen/helium and ab initio models plotted in a broader wavelength range. As we can see, the
two models can be better distinguished at longer wavelengths. The average transit depth of 55 Cancri e at 4.5 mu obtained with Spitzer Space Telescope (Demory et al.
2016) is also shown in light blue.
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Tsiaras	
  et	
  al.	
  2016	
  

d

P 3 = {1, x3, x6, x9, x12, x15, x18}

G/P 3 = {P 3, xP 3, x2P 3}

where
xP 3 = {x, x4, x7, x10, x13, x16, x19}

x2P 3 = {x2, x5, x8, x11, x14, x17, x20}

Star: Te↵ = 5200K, M⇤ = 0.91M�, R⇤ = 0.94R�
Planet: Teq = 1950K, Mp = 8.1M�, Rp = 2.0M�
Orbital: a = 0.01545AU = 3.523R⇤, P = 0.7365417 days

2

Hubble/WFC3	
  spectrum	
  



A	
  POPULATION	
  STUDY	
  OF	
  
HOT	
  JUPITER	
  ATMOSPHERES	
  

	
  
•  Largest	
  catalogue	
  of	
  	
  

exoplanet	
  atmospheres	
  (30	
  
planets);	
  

•  Observed	
  with	
  Hubble/WFC3;	
  

•  H2O,	
  TiO,	
  VO	
  detecRons;	
  

•  No	
  clouds	
  in	
  very	
  hot	
  planets;	
  

•  Atmospheric	
  Detectability	
  
Index	
  (ADI)	
  not	
  correlated	
  
with	
  S/N	
  

Tsiaras	
  et	
  al.,	
  arXiv:1704.05413	
  



Conclusions	
  
TO	
  DATE	
  
•  Transit/eclipse/phase	
  curve	
  spectroscopy	
  for	
  exoplanets	
  atmospheric	
  

characterisaRon;	
  
•  High-­‐performance,	
  objecRve	
  (blind)	
  data	
  detrending	
  methods:	
  pixel-­‐ICA,	
  

stripe-­‐ICA;	
  
•  High-­‐precision	
  and	
  accuracy	
  empirical	
  star’s	
  limb-­‐darkening:	
  SEA	
  BASS;	
  
•  ScienRfic	
  results:	
  individual	
  targets	
  (KOI13,	
  55	
  Cnc	
  e),	
  catalog	
  (30	
  planets)	
  
	
  
FUTURE	
  PROJECTS	
  
•  JWST	
  data	
  detrending	
  pipelines	
  
•  ObservaRonal	
  techniques	
  for	
  stellar	
  acRvity,	
  non-­‐spherical	
  bodies,	
  etc.	
  
•  Catalog:	
  higher-­‐quality	
  data,	
  larger	
  wavelength	
  coverage	
  and	
  sample	
  of	
  

exoplanets;	
  
•  CorrelaRons,	
  link	
  with	
  formaRon	
  and	
  evoluRon.	
  

MERCI	
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Figure 2. The o.c. S/N as a function of the ADI shows that planets with o.c. S/N > 15 are always detectable but no correlation between
ADI and o.c. S/N can be found for planets with o.c S/N < 15.

Figure 3. A positive correlation exists between the planet radius and ADI, with larger planets generally featuring more detectable
atmospheres. However, We note an outlying cluster of five planets, including WASP-31 b, WASP-63 b, WASP-67 b, WASP-74 b and WASP-
101 b. These low ADIs may indicate high-altitude cloud covers, or water depleted atmospheres.



•  Fully	
  Bayesian	
  Retrieval	
  	
  
•  MCMC	
  	
  
•  Nested	
  Sampling	
  
•  Maximum	
  Likelihood	
  

	
  
•  Cross-­‐sec&ons	
  from	
  Hitran/

Hitemp	
  and	
  the	
  ExoMol	
  project	
  
	
  
•  Prior	
  composiRon	
  selecRon	
  

through	
  pacern	
  recogni&on	
  
sodware	
  

	
  
•  Full	
  parallelisa&on	
  for	
  cluster	
  

compu&ng	
  	
  

Waldmann	
  et	
  al.	
  2015a,b;	
  Rocchero	
  et	
  al.	
  2016	
  



PCA	
  vs	
  ICA	
  

PCA	
  

•  Uncorrelatedness:	
  
E{xy}	
  =	
  E{x}	
  E{y}	
  

•  Up	
  to	
  2nd-­‐order	
  staRsRcs	
  
•  Pre-­‐processing	
  step	
  for	
  
ICA	
  

ICA	
  

•  Independence:	
  
E{f(x)g(y)}	
  =	
  E{f(x)}	
  E{g(y)}	
  

•  Higher-­‐order	
  staRsRcs	
  

•  Linear	
  transformaRon	
  of	
  the	
  observaRons;	
  
•  Find	
  a	
  basis	
  of	
  orthogonal	
  components.	
  



ICA:	
  sta&s&cs	
  (2)	
  
Among	
  all	
  the	
  distribuRons	
  with	
  fixed	
  mean	
  and	
  covariance,	
  
the	
  gaussian	
  distribuRon	
  has	
  the	
  maximum	
  entropy.	
  

D.3.2 Mutual information

Mutual information measures the informations that members of a set of ran-
dom variables have on the other random variables in the set. For a random
vector y = (y

1

, y
2

, ..., yn) it is defined by

I(y
1

, y
2

, ..., yn) =
nX

i=1

H(yi)�H(y) (D.10)

where H is the entropy function.
It is intuitive that maximization of indipendence is equivalent to minimiza-
tion of mutual information. Using Equation 2.4, mutual information for
source signals results:

I(s
1

, s
2

, ..., sn) =
X

i

H(si)�H(x)� log|det(W)| (D.11)

If the yi are constrained to be uncorrelated and of unit variance, det(W) is
constant, so that the last term in Equation D.11 has no e↵ect in finding the
minimum of mutual information.
Mutual information is not really used because its complexity. Other estima-
tors are all related to mutual information.

D.3.3 Negentropy

Among all the distributions with fixed mean and covariance matrix, the
gaussian distribution has the maximum entropy. This property suggests to
define negentropy as an estimator of nongaussianity:

J(y) = H(ygauss)�H(y) (D.12)

where ygauss is a random gaussian vector with the same covariance matrix of
y. Negentropy is zero if y is gaussian, positive in other cases.
Thus minimization of mutual information equivals maximization of the sum
of the nongaussianities of the estimated components.
The entropy of a gaussian random vector can be evaluated as

H(ygauss) =
1

2
log |det(C)|+ n

2
[1 + log(2⇡)] (D.13)

where C is the covariance matrix and n is the dimension of y.
An important property of negentropy is scale-invariance, which justify the
ambiguity in the amplitudes of indipendent components extracted via ICA,
announced in 2.10.
Negentropy is hard computing; several approximations are used.

70

negentropy	
  

•  Mutual	
  informaRon	
  and	
  negentropy	
  are	
  hard	
  compuRng.	
  
	
  

•  AlternaRvely,	
  we	
  can	
  maximize	
  non-­‐gaussianity	
  of	
  the	
  
source	
  signals,	
  through	
  different	
  esRmators.	
  

	
  

D.3.4 Kurtosis

Kurtosis is a fourth order function of the moments of the pdf. In the zero-
mean case it is defined by

kurt(y) = E(y4)� 3E(y2)2 (D.14)

where E means the expectation value of its argument, or in the normalized
form by

˜kurt(y) =
E(y4)

E(y2)2
� 3 (D.15)

Gaussian random variables have zero kurtosis, those with positive kurtosis
are called supergaussian, and are more peaked, those with negative kurtosis
are called subgaussian, and are flatter. There exist also nongaussian random
variables with zero kurtosis, but they are very rare. For these reasons kur-
tosis, or rather its absolute value, is used as a measure of nongaussianity.
Being y

1

and y
2

two scalar random variables and ↵ a numerical constant, the
following linearity properties are valid:

kurt(y
1

+ y
2

) = kurt(y
1

) + kurt(y
2

) (D.16)

kurt(↵y
1

) = ↵4kurt(y
1

) (D.17)

The major advantage of kurtosis is its semplicity, but it is not an optimal
estimator, because its range, i.e. [�2,+1[, is not symmetric. In addition, it
is very sensible to outlayers.

D.3.5 Temporal correlations

Independent signals must be uncorrelated, that is:

E{si(t)sTj (t)} = ⇢i�ij (D.18)

Uncorrelatedness is not a su�cient condition for independence. Two signals
are independent if also time-lagged covariances are zero:

E{si(t+ ⌧)sTj (t)} = ⇢i(⌧)�ij (D.19)

This means that time-lagged covariance matrices of independent source sig-
nals are diagonal.
Using Equation 2.4:

E{Wxi(t+ ⌧)xT
j (t)W

T} = WE{xi(t+ ⌧)xT
j (t)}WT = ⇢i(⌧)�ij (D.20)
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Being W = A�1 and x signal whitened, Equation D.20 becomes:

ATE{xi(t+ ⌧)xT
j (t)}A = ⇢i(⌧)�ij (D.21)

The mixing matrix is an approximate joint diagonalizator of several time-
lagged covariance matrices.
A measure of deviation from diagonality for a matrix M is:

off(M) =
X

i 6=j

|Mij|2 (D.22)

D.4 ICA algorithms

As expected in light of the discussion in the previous section, there are many
algorithms that implement the ICA technique. I will not present all the exist-
ing algorithms, but only the ones used in my project and their propedeutics,
pointing out the di↵erence in terms of performance. It will be assumed to
work with whitened data.

D.4.1 Negentropy approximations: contrast functions

Hyvarinen in 1998 developed a class of approximations for negentropy (Hy-
varinen 1999):

J(y) ⇡
pX

i=1

ki[E{Gi(y)}� E{Gi(⌫)}]2 (D.23)

where ki are some positive constants, and ⌫ is a random gaussian variable of
zero mean and unit variance, the variable y is assumed to be of zero mean
and unit variance, and the functions Gi are non quadratic. The Gi functions
are called “contrast functions”. Often, only one contrast function is used, so
that Equation D.23 becomes:

J(y) / [E{G(y)}� E{G(⌫)}]2 (D.24)

The choice of the contrast functions is important to optimize the perfor-
mances of the algorithm. This is discussed in the following paragraphs for
specific algorithms.

D.4.2 E�ciency and Cramér-Rao Lower Bound

If the source signals si and the mixing matrix A are known, which tipically
only happens in tests, it is possible to evaluate the quality of the separation,
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The elements of the Interference-to-Signal Ratio matrix are asymptotically
equal to (Tichavsky et al. 2006):

ISREF
ij =

1

N

(�i � µ2

i )(�j � µ2

j + |µj � ⇢j|2)
|µj � ⇢j|2(�i � µ2

i ) + |µi � ⇢i|2(�j � µ2

j + |µj � ⇢j|2)
(D.54)

In the best possible case, that is when each gi equals the score function  i of
the corresponding distribution, the elements ISREF

ij tend to the correspond-
ing Cramer Rao Lower Bound:

CRLBij =
1

N

j
ij � 1

(D.55)

with i given by Equation D.44.

D.4.5 SOBI and WASOBI

SOBI and WASOBI algorithms are based on approximate joint diagonaliza-
tion of several time-lagged estimated correlation matrices (D.3.5, Tichavsky
et al. 2008):

R
x

(⌧k) = E(x(t)xT (t+ ⌧k)), k = 0, ...,M � 1 (D.56)

R
s

(⌧k) = ATR
x

(⌧k)A (D.57)

WASOBI is an improvement of SOBI, because it considers weights inversely
proportional to the covariance in the correlation estimates.
The Interference-to-Signal Ratio matrix for WASOBI is asymptotically given
by (Tichavsky et al. 2008):

ISRWA
ij ' 1

N

�ij

1� �ij�ji

�2

iRj(0)

�2

jRi(0)
(D.58)

where �2

i is the variance of the ith source and

�ij =
1

�2

i

M�1X

r,s=0

arjasjRi(⌧r � ⌧s) (D.59)

being arj the autoregression coe�cient of the jth source.
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via the so called gain matrix G :

G = ŴA (D.25)

where Ŵ is the estimated demixing matrix. In case of perfect demixing, the
gain matrix G is a diagonal matrix, with the amplitudes of the estimated
source signals as diagonal elements. These are meaningless, as discussed in
2.2.3. This makes preferable to refer to the normalized gain matrix:

G̃ = ŴAD
1
2 (D.26)

where D is the diagonal matrix of the variances of the extracted source
signals. In case of perfect demixing, the normalized gain matrix G̃ is the
identity.
A nonzero term out of diagonal indicates the residual contamination of a
signal by another. The Interference-to-Signal Ratio (ISR) matrix is defined
by:

ISRij =
G̃

2

ij

G̃
2

ii

⇡ G̃
2

ij (D.27)

The interference-to-signal ratio for the ith estimated component is:

isri =

Pn
j=1,j 6=i G̃

2

ij

G̃
2

ii

(D.28)

A separation is perfect if the inferferences are all zeros, i.e. ISR is the identity
matrix. This is not feasible. There exists a theoretical lower limit for the
elements of ISR matrix, that is the Cramér Rao Lower Bound CRLB:

ISRij � CRLBij (D.29)

It is a general theorem of Information Theory, that limits inferiorly the vari-
ance of an unbiased estimator. A source separation is better as its ISR
elements are closer to the Cramér Rao Lower Bound.

D.4.3 FastICA

FastICA for one component

It consist in finding a weight vector w such that the projection wTx is maxi-
mally nongaussian, as measured by an approximation of negentropy via D.24,
with the conventional constraint ||w|| = 1. I denote with g the derivative of
G.
The FastICA algorithm for one unit is the following (Hyvarinen and Oja
2000):
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parameters are the mean values of the chains, and the zero-order error bars, �
par,0, are

their standard deviations. The zero-order error bars only accounts for the scatter in the

detrended light-curve; they must be increased by a factor that includes the uncertainties

due to the detrending process:

�

par
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par,0

s
�

2
0 + �

2
ICA

�

2
0

(1)

where �

par

is the final parameter error bar, �0 is the square root of the likelihood’s variance

(approximately equal to the standard deviation of residuals), and �

ICA

is a term associated

to the detrending process. Morello et al. (2014, 2015) suggest the following formula for

�

ICA

:

�

2
ICA

= f

2

 
X

j
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2
j

ISR
j
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2
ntc�fit

!
(2)

where ISR is the so-called Interference-to-Signal-Ratio matrix, o
j

are the coe�cients of the

non-transit-components, m is their number, �
ntc�fit

is the standard deviation of residuals

from the theoretical raw light-curve, out of the transit, f is the normalising factor for

the detrended light-curve. The sum on the left takes into account the precision of the

components extracted by the algorithm; �
ntc�fit

indicates how well the linear combination of

components approximates the out-of-transit. The MULTICOMBI code, i.e. the algorithm

that we use for the ICA transformation, provides two Interference-to-Signal-Ratio matrices,

ISREF and ISRWA, associated to the sub-algorithms EFICA and WASOBI, respectively.

Two approaches has been suggested to derive a single Interference-to-Signal-Ratio matrix:

ISR =
ISREF + ISRWA

2
(3)

ISR
i,j

= min

�
ISREF

i,j

, ISRWA

i,j

�
(4)

Eq. 3 is a worst-case estimate, while Eq. 4 takes into account the outperforming separation

capabilities of MULTICOMBI compared to EFICA and WASOBI. We adopt Eq. 4

throughout this paper, but results obtained with both options are reported in Tab. 7, 8, 9,

and 10. In most cases the di↵erences are negligible.
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